Article
  • A Thermogravimetric Study on the Improved Thermal Stabilities of Oxidized PAN Fiber, the Molding Compound and the Composite
  • Cho D, Ahn YS, Lee JY
  • 산화 PAN 섬유, 몰딩컴파운드 및 복합재료의 향상된 열안전성에 대한 열중량분석 연구
  • 조동환, 안영석, 이진용
Abstract
The present study is about the improvement of the thermal properties of oxidized or stabilized polyacrylonitrile fiber (here referred to as OXI-PAN fiber), which is an intermediate material available during PAN-based carbon fiber manufacturing processes and related materials. The thermal stabilities and oxidation resistances of OXI-PAN fiber, OXI-PAN fiber/phenolic molding compound and the composite made of the fiber coated with phosphoric acid solutions were extensively examined with the uncoated counterparts, using dynamic and static thermogravimetric analysis (TGA) methods. As a result, the thermal stabilities and oxidation resistances of the fiber, the molding compound and the composite were effectively improved, especially above 600℃, by use of the coated fiber in contrast to the uncoated materials. An introduction of phosphoric acid significantly contributes to the retardation of thermal oxidation of the OXI-PAN fiber part rather than the matrix resin part in the composite.

본 연구는 PAN계 탄소섬유 제조공정 동안 얻을 수 있는 중간재료인 산화 또는 안정화 폴리아크릴로니트릴 섬유(OXI-PAN 섬유)와 관련 재료의 열적특성의 향상에 관한 것이다. 인산용액으로 표면이 코팅된 섬유로 이루어진 OXI-PAN 섬유, OXI-PAN 섬유/페놀수지 몰딩컴파운드 및 그 복합재료의 열안정성과 산화저항성을 동적과 정적 열중량분석 방법을 사용하여 코팅되지 않은 것과 폭 넓게 비교, 조사하였다. 결과적으로 섬유, 몰딩컴파운드 그리고 복합재료의 열안정성과 산화저항성은 코팅한 섬유를 사용하므로써 특히 600℃ 이상에서 효과적으로 향상되었다. 인산의 도입은 복합재료에서 매트릭스수지 부분보다는 오히려 OXI-PAN 섬유 부분의 열산화 반응을 지연시키는데 중요하게 기여하였다.

Keywords: oxidized PAN fiber; molding compound; OXI-PAN fiber/phenolic composite; thermal stability; phosphoric acid coating; thermogravimetry

References
  • 1. Donnet JB, Bansal RCCarbon Fibers, Chapter 1, Marcel Dekker Inc., New York (1984)
  •  
  • 2. Gupta AK, Paliwal DK, Bajaj P, J. Macromol. Sci.-Rev. Macromol. Chem. Phys., C31(1), 1 (1991)
  •  
  • 3. Ko TH, Ting HY, Lin CH, Chen JC, J. Appl. Polym. Sci., 35, 863 (1988)
  •  
  • 4. Fitzer E, Frohs W, Chem. Eng. Technol., 13, 41 (1990)
  •  
  • 5. Lee JY, Cho DH, Kim DG, Park IS, Ha HS, Yoon BI, Polym.(Korea), 17(1), 59 (1993)
  •  
  • 6. Ko TH, Jaw JJ, Chen YC, Polym. Compos., 16, 522 (1995)
  •  
  • 7. Dhami TL, Bahl OP, Jain PK, Carbon, 33, 1517 (1995)
  •  
  • 8. Markovic V, Marinkovic S, Carbon, 18, 329 (1980)
  •  
  • 9. Ko TH, Hone KW, SAMPE J., 28, 17 (1992)
  •  
  • 10. Strong ABFundamentals of Composites: Manufacturing Materials, Methods, and Applications, Chapter 9, SME, Dearborn (1989)
  •  
  • 11. Cho D, Ha HS, Lim YS, Yoon BI, Kim KS, Carbon, 34, 861 (1996)
  •  
  • 12. Mun JK, Park CO, Yoon BI, Kim KS, Joo HJ, J. Mater. Sci., 30(6), 1529 (1995)
  •  
  • 13. Banks M, Ebdon JR, Johnson M, Polymer, 34, 4547 (1993)
  •  
  • 14. Cho D, Ha HS, Lim YS, Yoon BIProceedings of 22nd Biennial Conf. on Carbon, p. 14, San Diego, CA (1995)
  •  
  • 15. Ko TH, Lin CH, Ting HY, J. Appl. Polym. Sci., 37, 553 (1989)
  •  
  • 16. Cho D, Carbon, 34, 1151 (1996)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1996; 20(6): 1024-1032

    Published online Nov 25, 1996