Article
  • Effect of Degree of Crystallinity on Mechanical Properties of Chitosan-g-Poly(vinyl alcohol) Copolymer
  • Kweon DK, Kang DW, Chung NJ
  • Chitosan-g-Poly(vinyl alcohol) 공중합체의 결정화도에 따른 기계적 특성
  • 권동건, 강두환, 정낙진
Abstract
Chitosan grafted poly(viny1 alcohol) (PVA) with high crystallinity was prepared by ceric ammonium nitrate (CAN) as initiatiator to use membrane. The copolymer membrane was crosslinked by chitosan-g-PVA copolymer submerging into 1 % glutaraldehyde aqueous solution. The water contents of copolymer and crosslinked copolymer were highly dependent on pH, especially between 4 and 7. The water content of crosslinked copolymer was larger than that of copolymer. Comparing the degree of crystallinity and mechanical properties according to the various conditions, the degree of crystallinity of copolymer membrane was increased with increasing grafting percentage and curing temperature. Tensile strength and Young's modulus of copolymer membrane were increased but elongation was decreased with increasing grafting percentage. Tensile strength, Young's modulus, and elongation of copolymer membrane were increased with increasing curing temperature but mechanical properties of crosslinked copolymer membrane were mostly constant with grafting percentage and curing temperature.

친수성 고분자이고 결정성이 우수한 폴리비닐알콜 (PVA)을 키토산에 ceric ammonium nitrate (CAN)을 개시제로 하여 그라프트시켜 키토산-g-PVA 공중합체를 합성하고 이를 막으로 제조한 후, 1% glutaraldehyde 수용액에 침지시켜 표면이 가교된 가교 공중합체막을 제조하였다. 가교 공중합체막의 경우, 가교시키지 않은 공중합체막에 비해 함수율은 급격히 감소하였으며, 특히 공중합체와 가교 공중합체 모두 pH 4∼7사이에서 급격한 함수율의 변화를 보였다. 또한 여러 조건에 따른 결정화도와 기계적 강도변화를 살펴본 결과, 공중합체막의 경우 PVA 그라프트율과 열처리 온도가 증가할수록 결정화도는 약간씩 증가되었으며, 그라프트율이 높을수록 인장강도는 증가되나 신장율은 감소되었다. 또한 열처리 온도가 높을수록 인장강도와 신장율 모두 증가하는 반면에, 가교 공중합체막의 경우에는 그라프율과 열처리 온도가 증가하더라도 인장강도와 신장율 모두 거의 일정한 값을 가지게 됨을 알 수 있었다.

Keywords: chitosan grafted poly(vinyl alcohol); water content; degree of crystallinity; crosslinked chitosan-g-PVA

References
  • 1. Nishidaka N, Yamaoka M, Haneda H, Kawakami K, Uno M, Macromolecules, 26, 4694 (1993)
  •  
  • 2. Nishio Y, Manley J, Macromolecules, 21, 1270 (1988)
  •  
  • 3. Kim JH, Lee YM, J. Appl. Polym. Sci., 44, 1823 (1992)
  •  
  • 4. Story RF, Goff LJ, Macromolecules, 22, 1059 (1989)
  •  
  • 5. Kweon DK, Kang DW, Kim WK, Polym.(Korea), 19(2), 153 (1995)
  •  
  • 6. Shim JS, Kim TH, Polym.(Korea), 11(6), 579 (1987)
  •  
  • 7. Mandelkern L, J. Polym. Sci. Polym. Symp., 50, 457 (1975)
  •  
  • 8. Peterlin A, J. Macromol. Sci.-Phys., B11, 57 (1975)
  •  
  • 9. Peppas NA, Merrill EW, J. Biomed. Mater. Res., 11, 423 (1977)
  •  
  • 10. Peppas NA, Hansen PJ, J. Appl. Polym. Sci., 27, 79 (1982)
  •  
  • 11. Rabek JFExperimental Methods in Polymer Chemistry, John Wiley & Sons, New York (1980)
  •  
  • 12. Kim JH, Kim JY, Lee YM, Kim KY, Cho CS, Sung YK, Polym.(Korea), 15(6), 695 (1991)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(6): 827-834

    Published online Nov 25, 1995