Article
  • Thermal Stabilization of PVC in Non-toxic Stabilizer Systems(Ⅳ) Thermal Stabilization by PEG and Epoxidized Soybean Oil System
  • Lee JH, Park C, Noh I
  • 무독성 안정제계에서 PVC의 열안정화에 관한 연구; 제4보 PEG와 Epoxidized Soybean Oil계의 열안정화
  • 이재형, 박종욱, 노익삼
Abstract
It was well known that the degradation is accelerated by ZnCl2 produced from the Zn/Ca-stearate stabilizer system in PVC compounds. In this study, the thermal stabilization effects of Poly(ethylene glycol) (PEG) containing oxyethylene units, epoxidized soybean oil(ESO), synthesized costabilizers containing both oxyethylene units and epoxy rings in a molecule and PEG/ESO mixed costabilizer system were investigated. The thermal stabilization effects were determined by measuring the amounts of HCl evolved from PVC. The stabilization effect of PEG400 which had the best thermal stabilization effect among PEG series was superior to that of ESO and the induction period(time to onset of HCl breaking away from PVC) was increased five to six times than that of PVC sheet containing only Zn/Ca-stearate stabilizers. The amounts of costabilizers were decreased by using PEG/ESO mixed costabilizer system without the reduction of the stabilization effect.

PVC의 열안정제로서 사용되는 Zn 및 Ca-stearate계에서는 안정화작용 이후 생성되는 ZnCl2로 인해 분해가 일시에 가속화될 수 있다는 사실이 널리 알려져 있다. 본 연구에서는 ZnC12와 착물을 형성할 수 있는 oxyethylene기를 가진 poly(ethylene glycol)(이하PEG)과 epoxidized soybean oil(이하 ESO) 및, oxyethylene기와 에폭시기를 한 분자내에 모두 가지고 있는 합성안정화조제와 PEG/ESO혼합계 안정화조제의 효과를 비교 검토하였으며 효과의 비교는 탈리되어 나오는 HCl의 양을 측정하여 검토하였다. PEG중 가장 큰 안정화효과를 가지는 PEG400은 ESO보다 안정화효과가 뛰어났으며, 염화수소가 나올 때까지의 시간, 즉, 유발기간(induction period,이하 IP)가 안정제만 넣고 안정화조제를 첨가하지 않은 PVC 쉬이트보다 5배 내지 6배 향상되었다. 또한 PEG/ESO혼합계의 안정화조제를 도입함으로써 열안정화 효과의 감소없이 안정화조제의 사용량을 줄일 수 있었다.

Keywords: PVC; the Thermal stabilization; PEG; epoxidized soybean oil; costabilizer

References
  • 1. Kim KY, Lee DH, Park C, Noh I, Polym.(Korea), 18(6), 1021 (1994)
  •  
  • 2. Kim KY, Lee DH, Park C, Noh I, Polym.(Korea), 18(6), 1030 (1994)
  •  
  • 3. Park C, Noh I, Polym.(Korea), 19(3), 340 (1995)
  •  
  • 4. Findley TW, J. Am. Chem. Soc., 67, 412 (1945)
  •  
  • 5. Sears JThe Technology of Plasticizers, p. 956, John Wiley & Sons, Inc. (1982)
  •  
  • 6. Maqvi MK, Unnikrishnan PA, Sharma YN, Bhardwaj IS, Eur. Polym. J., 20(1), 95 (1984)
  •  
  • 7. Daniels VD, Rees NH, J. Polym. Sci. A: Polym. Chem., 12, 2115 (1974)
  •  
  • 8. Ivan B, Kenney JP, J. Polym. Sci. A: Polym. Chem., 21, 2177 (1983)
  •  
  • 9. Iida T, Nakanish M, Goto K, J. Appl. Polym. Sci., 19, 235 (1975)
  •  
  • 10. Iida T, Nakanish M, Goto K, J. Appl. Polym. Sci., 19, 243 (1975)
  •  
  • 11. Tadokoro H, Polymer, 25, 147 (1984)
  •  
  • 12. Takahashi Y, Tadokoro H, Macromolecules, 6, 672 (1973)
  •  
  • 13. Iida T, Kawato J, Maruyama K, Goto K, J. Appl. Polym. Sci., 34, 2355 (1987)
  •  
  • 14. Anderson DF, McKenzie DA, J. Polym. Sci. A: Polym. Chem., 53, 567 (1981)
  •  
  • 15. Penn WSPVC Technology, 3rd ed., p. 188, Applied Science Burking (1971)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(5): 543-550

    Published online Sep 25, 1995