Article
  • Preparation and Viscosity of Unsaturated Polyester Resins Based on Recycled Poly(ethylene terephthalate)
  • Kim JH, Lee DS, Park TS, Kim J, Kim KU
  • 재생 Poly(ethylene terephthalate)를 이용한 불포화폴리에스테르 수지의 제조와 점도
  • 김주현, 이대수, 박태석, 김정안, 김광웅
Abstract
Various unsaturated polyester (UPE) resins were prepared by glycolysis of recycled poly(ethylene terephthalate) (PET), condensation polymerization of glycolysis product with dibasic acid, and dilution of the UPE with styrene monomer (SM). For the glycolysis of the PET, propylene glycol (PG) or dipropylene glycol (DPG) was used and maleic anhydride was used as a dibasic acid of condensation polymerization. Molecular weight of the UPE increased as the PET content of the resin or dibasic acid/glycol ratio was increased. The molecular weight of the UPE also increased When DPG was used instead of PG in the glycolysis of the PET at the same conditions. It was found that viscosity of the UPE resin decreased as the PET content of the UPE was decreased and DPG was used instead of PG in the preparation of UPE from recycled PET. The difference in viscosities of the various UPE resins were interpreted employing Doolittle equation based on free volume concept.

재생 poly(ethylene terephthalate) (PET)의 글리콜리시스와 이염기산과의 축중합을 통하여 다양한 불포화폴리에스테르 (unsaturated polyester:UPE)를 합성하고 스티렌 모노머 (styrene monomer:SM)로 희석하여 불포화폴리에스테르 수지를 제조하였다. PET의 글리콜리시스를 위하여 propylene glycol (PG) 또는 dipropylene glycol (DPG)을 사용하였으며, 축중합을 위한 이염기산으로 무수말레인산을 사용하였다. UPE의 분자량은 UPE제조시 PET첨가량을 증가시키거나 이염기산/글리콜의 비를 높일수록 높아졌다. 또한 동일한 조건에서 재생 PET의 글리콜리시스에 PG를 사용한 경우보다 DPG를 사용한 경우 UPE 분자량이 높았다. UPE수지 제조시 PET함량이 적고, PET의 글리콜리시스에 PG 대신 DPG를 사용한 경우 SM으로 희석한 UPE 수지의 점도는 낮은 경향이 관찰되었다. 다양한 UPE 수지의 점도 차이는 자유부피 이론에 기초한 Doolittle 식으로 해석할 수 있었다.

Keywords: unsaturated polyester; recycled poly(ethylene terephthalate); viscosity; Doolittle equation

References
  • 1. Traugott TD, Barlow JW, Paul DR, J. Appl. Polym. Sci., 28, 2947 (1983)
  •  
  • 2. Chen IM, Shiah CM, Plast. Eng., 45(Oct.), 33 (1989)
  •  
  • 3. Akkadeddi MK, Buskirk BV, Polym. Prepr., 33(2), 602 (1992)
  •  
  • 4. Vaidta UR, Nadkarni VM, J. Appl. Polym. Sci., 34, 235 (1987)
  •  
  • 5. Vaidta UR, Nadkarni VM, Ind. Eng. Chem. Res., 26, 194 (1987)
  •  
  • 6. Rebeiz KS, Fowler DW, Paul DR, J. Appl. Polym. Sci., 44, 1649 (1992)
  •  
  • 7. Urbansky J, Czerwinski W, Janika K, Majewska P, Zowall HHandbook of Analysis of Synthetic Polymers and Plastics, Chap. 8, Ellis Horwood, Chichester, U.K. (1977)
  •  
  • 8. Flory PJPrinciples of Polymer Chemistry, Cornell University Press, Ithaca, N.Y. (1953)
  •  
  • 9. Krevlen DWVProperties of Polymers, Chap. 16, Elsevier Science Publishers, New York (1990)
  •  
  • 10. Toussaint A, Szigetvari I, J. Coat. Technol., 59(750), 49 (1987)
  •  
  • 11. Doolittle AK, J. Appl. Phys., 23, 236 (1952)
  •  
  • 12. Bueche FPhysical Properties of Polymers, John Wiley and Sons, New York (1962)
  •  
  • 13. Williams MI, Landel RF, Ferry JD, J. Am. Chem. Soc., 77, 3701 (1955)
  •  
  • 14. Wood LA, J. Polym. Sci., 28, 319 (1958)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1995; 19(3): 353-358

    Published online May 25, 1995