Article
  • 4,4'-Benzophenonetetracarboxylic Dianhydride(BTDA) Based Aromatic Polyimides
  • Kim SK, Jung CH, Kim HS, Choe S
  • 방향족 폴리아미드의 특성관계: 1. BTDA를 이용한 방향족 폴리아미드의 합성 및 특징
  • 김상건, 정중하, 김헌상, 최순자
Abstract
Aromatic polyimides formed from 3,3',4,4'-benzophenone tetracarboxylic dianhydride(BTDA) with 4,4'-oxydianiline(4,4'-ODA), 3,4'-oxydianiline(3,4'-ODA), 4,4'-diaminodiphenylsulfone(4,4'-DDSO2), 3,3'-diaminodiphenylsulfone(3,3'-DDSO2), 2,2-bis(3-amino-4-hydroxyphenyl) hexafluoropropane(BIS-AP-AF), and 2,2-bis(3-amino-4-methylphenyl) hexafluoropropane(BIS-AT-AT) have been studied in the degree of imidization due to the curing conditions, in solubilities, viscosities, thermal stabilities and the glass transition temperatures. Synthesis of polyimides was performed by the first step in preparation of polyamic acid(PAA) solutions, films or powders by the stoichiometric reaction of aromatic dianhydride with various aromatic diamines using N, N-dimethyl acetamide(DMAc) at room temperature and by the second step in thermal dehydration(curing) of the PAA. The effects of curing conditions such as curing duration(1, 2, 3, 4, 5hr), temperatures(100, 150, 250, 300℃, and higher temperature if necessary) and environments(air, vacuum and nitrogen) on the degree of imidization were investigated. The degree of imidization was the highest under nitrogen. At low temperature, the degree of imidization was dramatically increased with curing duration, then leveled off for longer period of curing while the difference of it was reduced at higher curing temperature. The solubility of PAA/PI mixed samples varied depending on solvents and curing temperature, while fully imidized PIs showed poor solubility in most solvents used. The thermal stability, the glass transition temperature(Tg) and the stoichiometric reaction ratio of the various polymides were investigated. In particular, reaction process between in vacuum and in air for economical purposes and structure-property relationships of six different PIs were considerably discussed.

3,3',4,4'-Benzophenonetetracarboxylic dianhydride(BTDA) 와 4,4'-oxydianiline(4,4'-ODA), 3,4'-oxydianiline(3,4'-ODA), 4,4'-diaminodiphenyl sulfone(4,4'-DDSO2), 3,3'-diaminodiphenyl sulfone(3,3'-DDSO2), 2.2-bis(3-amino-4-hydroxyphenyl)-hexafluoropropane(BIS-AP-AF), 2,2-bis(3-amino-4-methylphenyl)-hexafluoropropane(BIS-AT-AF)을 이용하여 합성한 방향족 polyamic acidj의 curing조건에 따른 imide화 정도와 용해도, 점도, polyimide의 열적특성 및 유리전이온도 등을 비교 조사하였다. 이때 Polyimide(Pl) 합성은 방항족 dianhydride와 여러가지 방향족 diamine을 실온에서 용매 N,N-dimethyl acetamide(DMAc)에 반응시켜 polyamic acid(PAA)용액, 필름 또는 분말로 이르는 첫 단계와 PAA를 열처리(curing)하여 탈수하는 두번째 단계를 거쳤다. 시간(1.2,3,4,Shr), 온도(100, 150, 200, 250, 300℃ 또는 그 이상)와 환경(공기, 진공, 질소개스) 등의 curing조건이 이미드화도에 미치는 영향을 조사하였는데, curing환경에 대한 이미드화도는 낮은 온도에서는 공기, 진공, 질소의 순으로 높게 나타났고, 높은 폰도에서는 각 환경에 대한 큰 차이가 없었다. Curing 시간에 따른 이미드화도는 낮은 온도에서는 급속하게 증가되나, 높은 온도로 갈수록 별 차이없이 일정한 값에 도달하였다. Curing온도와 용매의 종류에 따른 각각의 PAA는 서로 상이한 용해도를 나타냈다. Fully imidize된 Pl의 열 안정성은 여러 curing환경에 대하여 별 차이없이 비슷한 양상을 보였으며. 유리전이온도(Tg)는 curing환경에 따라 다소의 차이를 보였다. 특히 양론비를 결정하는 점도 측정과 PAA의 안정성을 관찰하였으며, PI 생산시의 경제성을 고려하여 진공과 공기중에서의 반응 결과를 비교하였다. 또한 BTDA와 각기 다른 구조식을 가진 diamine류에서 합성된 PI의 strutture-property 관계를 논의하였다.

References
  • 1. King FA, King JJEngineering Thermoplastics, pp. 315-316, Marcel Dekker, New York (1985)
  •  
  • 2. Clair AK, Clair TL, Slemp WS, Ezzell KSNASA TM-87650, NASA, Washington, D.C. (1985)
  •  
  • 3. Choe S, Williams DJ, Karasz FE, MacKnight WJProceedings of ACS Preprint: Division of PMSE, 56, 827 (1987)
  •  
  • 4. Stankovic S, Guerra G, Williams DJ, Karasz FE, MacKnight WJ, Polym. Commun., 29, 14 (1988)
  •  
  • 5. Dupont EIde Nemours & Co., French Patent, No. 1,239,491 (1960)
  •  
  • 6. Frost LW, Kesse I, J. Appl. Polym. Sci., 8, 1039 (1964)
  •  
  • 7. Cubben RCP, Polymer, 6, 419 (1965)
  •  
  • 8. Endrey AL, Edwards WMU.S. Patent, No. 34,179,614, Apr. 20 (1965)
  •  
  • 9. Endrey AL, Edwards WMU.S. Patent, 3,179,634, Apr. 20 (1965)
  •  
  • 10. Brekner M, Tong HM, Hougham G, Molis S, Thomas R, Robinson B, Ho P, Hofer DCuring of Polymides, IBM, IBM T.J. Watson Research Center, Yorktown Heights, N.Y. (1986)
  •  
  • 11. Kreuz JA, Endrey AL, Gay FP, Sroog CE, J. Polym. Sci. A: Polym. Chem., 4, 2607 (1966)
  •  
  • 12. Reimschussel HK, Roldan LG, Sibilia JP, J. Polym. Sci. B: Polym. Phys., 6, 559 (1960)
  •  
  • 13. Matsuo T, Bull. Chem. Soc. Jpn., 37, 1844 (1964)
  •  
  • 14. Bower GM, Frost LW, J. Polym. Sci. A: Polym. Chem., 3135 (1963)
  •  
  • 15. Mulliken RS, Pearson WBMolecular Complexes, John Wiley & Sons, New York (1969)
  •  
  • 16. Dine-Hart RA, Wright WW, Macromol. Chem., 143, 189 (1971)
  •  
  • 17. Choudhury M, J. Phys. Chem., 66, 353 (1960)
  •  
  • 18. Lee DH, Son IH, Park JG, Ha KR, Polym.(Korea), 13(5), 415 (1989)
  •  
  • 19. Lee DH, Park LS, -Soo K, Lee SH, Seo WY, Polym.(Korea), 14(5), 441 (1990)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 1992; 16(3): 249-259

    Published online May 25, 1992