Article
  • Rheological Behaviors of Ring-shaped Polymeric Liquids Under Flow Conditions
  • Jun Mo Kim

  • Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Kyoggi-do 16227, Korea

  • 외부 유동하 다양한 고리형 고분자 용액 유변 특성
  • 김준모

  • 경기대학교 화학공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, New York, 1953.
  •  
  • 2. Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University Press: Oxford, 2003.
  •  
  • 3. Haque, F. M.; Grayson, S. M. The Synthesis, Properties, and Potential Applications of Cyclic Polymers. Nature Chemistry. 2020, 12, 433-444.
  •  
  • 4. Hadjichristidis, N.; Hirao, A.; Tezuka. Y; Du Prez, F. Complex Macromolecular Architectures: Synthesis, Characterization, and Self-assembly; John Wiley & Son: Hobokenk, New Jersey, 2011.
  •  
  • 5. Yamamoto, T. Synthesis of Cyclic Polymers and Topology Effects on Their Diffusion and Thermal Properties. Polym. J. 2013, 45, 711-717.
  •  
  • 6. Roovers, J. The Melt Properties of Ring Polystyrenes. Macromolecules. 1984, 18, 1359-1361.
  •  
  • 7. Halverson, J. D.; Lee, W. B.; Grest, G. S.; Grosberg, A. Y.; Kremer, K. Molecular Dynamics Simulation Study of Nonconcatenated Ring Polymers in a Melt. I. Statics. J. Chem. Phys. 2011, 134, 204904.
  •  
  • 8. Kapnistos, M.; Lang, M.; Vlassopoulos, D.; Pyckhout-Hintzen, W.; Richter, D.; Cho, D.; Chang, T.; Rubinstein, M. Unexpected Power-law Stress Relaxation of Entangled Ring Polymers. Nat. Mater. 2008, 7, 997-1002.
  •  
  • 9. Pasquino, R.; Vasilakopoulos, T. C.; Jeong, Y. C.; Lee, H.; Rogers, S.; Sakellariou, G.; Allgaier, J; Takano, A.; Brás, A. R.; Chang, T.; Gooßen, S; Pyckhout-Hintzen, W.; Wischnewski, A.; Hadjichristidis, N.; Richter, D.; Rubinstein, M.; Vlassopoulos, D. Viscosity of Ring Polymer Melts. ACS Macro Lett. 2013, 2, 874-878.
  •  
  • 10. Tsolou, G.; Stratikis, N.; Baig, C.; Stephanou, P. S.; Mavrantzas, V. G. Melt Structure and Dynamics of Unentangled Polyethylene Rings: Rouse Theory, Atomistic Molecular Dynamics Simulation, and Comparison with the Linear Analogues. Macromolecules 2010, 43, 10692-10713.
  •  
  • 11. Yoon, J.; Kim, J.; Baig, C. Nonequilibrium Molecular Dynamics Study of Ring Polymer Melts Under Shear and Elongation Flows: A Comparison with Their Linear Analogs. J. Rheol. 2016, 60, 673-685.
  •  
  • 12. Arrighi, V.; Gagliardi, S.; Dagger, A.; Semlyen, J.; Higgins, J.; Shenton, M. Conformation of Cyclics and Linear Chain Polymers in Bulk by SANS. Macromolecules 2004, 37, 8057-8065.
  •  
  • 13. Brown, S.; Lenczycki, T.; Szamel, G. Influence of Topological Constraints on the Statics and Dynamics of Ring Polymers. Phys. Rev. E 2001, 63, 052801.
  •  
  • 14. Halverson, J. D.; Smrek, J.; Kremer, K.; Grosberg, A. Y. From a Melt of Rings to Chromosome Territories: the Role of Topological Constraints in Genome Folding. Rep. Prog. Phys. 2014, 77, 022601.
  •  
  • 15. Tsamopoulos, A. J.; Katsarou, A. F.; Tsalikis, D. G.; Mavrantzas, V. G. Shear Rheology of Unentangled and Marginally Entangled Ring Polymer Melts from Large-scale Nonequilibrium Molecular Dynamics Simulations. Polymers 2019, 11, 1194.
  •  
  • 16. Vettorel, T.; Grosberg, A. Y.; Kremer, K. Statistics of Polymer Rings in the Melt: a Numerical Simulation Study. Phys. Biol. 2009, 6, 025013.
  •  
  • 17. Hsiao, K.-W.; Schroeder, C. M.; Sing, C. E. Ring Polymer Dynamics are Governed by a Coupling Between Architecture and Hydrodynamic Interactions. Macromolecules 2016, 49, 1961-1971.
  •  
  • 18. Young, C. D.; Qian, J. R.; Marvin, M.; Sing, C. E. Ring Polymer Dynamics and Tumbling-stretch Transitions in Planar Mixed Flows. Phys. Rev. E 2019, 99, 062502.
  •  
  • 19. Chen, W.; Chen, J.; An, L. Tumbling and Tank-treading Dynamics of Individual Ring Polymers in Shear Flow. Soft Matter 2013, 9, 4312-4318.
  •  
  • 20. Tsalikis, D. G.; Mavrantzas, V. G.; Vlassopoulos, D. Analysis of Slow Modes in Ring Polymers: Threading of Rings Controls Long-time Relaxation. ACS Macro Lett. 2016, 5, 755-760.
  •  
  • 21. Smrek, J.; Kremer, K.; Rosa, A. Threading of Unconcatenated Ring Polymers at High Concentrations: Double-folded vs. Time-equilibrated Structures. ACS Macro Lett. 2019, 8, 155-160.
  •  
  • 22. O’ Connor, T. C.; Ge, T.; Rubinstein, M.; Grest, G. S. Topological Linking Drives Anomalous Thickening of Ring Polymers in Weak Extensional Flows. Phys. Rev. Lett. 2020, 124, 027801.
  •  
  • 23. Huang, Q.; Ahn, J.; Parisi, D.; Chang, T.; Hassager, O.; Panyukov, S.; Rubinstein, M.; Vlassopoulos, D. Unexpected Stretching of Entangled Ring Macromolecules. Phys. Rev. Lett. 2019, 122, 208001.
  •  
  • 24. Doi, M.; Edwards, S. F. The Theory of Polymer Dynamics; Clarendon Press: Oxford, Clarendon, 1988.
  •  
  • 25. Rosa, A.; Everaers, R. Ring Polymers in the Melt State: the Physics of Crumpling. Phys. Rev. Lett. 2014, 112, 118302.
  •  
  • 26. Cates, M.; Deutsch, J. Conjectures on the Statistics of Ring Polymers. J. Phys. (France) 1986, 47, 2121-2128.
  •  
  • 27. Sakaue, T. Statistics and Geometrical Picture of Ring Polymer Melts and Solutions. Phys. Rev. E 2012, 85, 021806.
  •  
  • 28. Obukhov, S. P.; Rubinstein, M.; Duke, T. Dynamics of a Ring Polymer in a Gel. Phys. Rev. Lett. 1994, 73, 1263.
  •  
  • 29. Milner, S. T.; Newhall, J. D. Stress Relaxation in Entangled Melts of Unlinked Ring Polymers. Phys. Rev. Lett. 2010, 105, 208302.
  •  
  • 30. Grosberg, A. Y.; Nechaev, S. K.; Shakhnovich, E. I. The Role of Topological Constraints in the Kinetics of Collapse of Macromolecules. J. Phys. (France) 1988, 49, 2095-2100.
  •  
  • 31. Jeong, S. H.; Cho, S.; Roh, E. J.; Ha, T. Y.; Kim, J. M.; Baig, C. Intrinsic Surface Characteristics and Dynamics Mechanisms of Ring Polymers in Solution and Melt Under Shear Flow. Polymer, 2020, 53, 10051-10060.
  •  
  • 32. Chen, W.; Chen, J.; An, L. Tumbling and Tank-treading Dynamics of Individual Ring Polymers in Shear Flow. Soft Matter 2013, 9, 4312-4318.
  •  
  • 33. Liebetreu, M.; Ripoll, M.; Likos, C. N. Trefoil Knot Hydrodynamic Delocalization on Sheared Ring Polymers. ACS Macro Lett. 2018, 7, 447-452.
  •  
  • 34. Hsiao, K.-W.; Schroeder, C. M.; Sing, C. E. Ring Polymer Dynamics are Governed by a Coupling Between Architecture and Hydrodynamic Interactions. Macromolecules 2016, 49, 1961-1971.
  •  
  • 35. Young, C. D.; Qian, J. R.; Marvin, M.; Sing, C. E. Ring Polymer Dynamics and Tumbling-stretch Transitions in Planar Mixed Flows. Phys. Rev. E 2019, 99, 062502.
  •  
  • 36. Li, Y.; Hsiao, K.-W.; Brockman, C. A.; Yates, D. Y.; Robertson-Anderson, R. M.; Kornfield, J. A.; San Francisco, M. J.; Schroeder, C. M.; Mckenna, G. B. When Ends Meet: Circular DNA Stretches Differently in Elongational Flows. Macromolecules 2015, 48, 5997-6001.
  •  
  • 37. Liebetreu, M.; Likos, C. N. Hydrodynamic Inflation of Ring Polymers Under Shear. Commun. Mater. 2020, 1, 4.
  •  
  • 38. Huang, Q.; Ahn, J.; Parisi, D.; Chang, T.; Hassager, O.; Panyukov, S.; Rubinstein, M.; Vlassopoulos, D. Unexpected Stretching of Entangled Ring Macromolecules. Phys. Rev. Lett. 2019, 122, 208001.
  •  
  • 39. Tezuka, Y.; Tsuchitani, A.; Yoshioka, Y.; Oike, H. Synthesis of Theta-shaped Poly(THF) by Electrostatic Self-assembly and Covalent Fixation with Three-arm Star Telechelics Having Cyclic Ammonium Salt Groups. Macromolecules 2003, 36, 65-70.
  •  
  • 40. Uehara, E; Deguchi, T. Statistical Properties of Multi-theta Polymer Chains. J. Phys. A: Math. Theor. 2018, 51, 134001.
  •  
  • 41. Uehara, E; Deguchi, T. Mean-square Radius of Gyration and the Hydrodynamics Radius for Topological Polymers Expressed with Graphs Evaluated by the Method of Quaternions Revisited. Reac. Funct. Polym. 2018, 133, 93-102.
  •  
  • 42. Abreu, C. R. A.; Escobedo, F. A. A Novel Configurational-bias Monte Carlo Method for Lattice Polymers: Application to Molecules with Multicyclic Architecture. Macromolecules 2005, 38, 8532-8545.
  •  
  • 43. Zhu, L.; Wang, X.; Li, J.; Wang, Y. Radius of Gyration, Mean Span, and Geometric Shrinking Factors of Bridged Cyclic Polycyclic Ring Polymers. Macromol. Theory Simul. 2016, 25, 482-496.
  •  
  • 44. Pipertzis, A.; Hossain, Md. D.; Monteiro, M. J.; Floudas, G. Segmental Dynamics in Multicyclic Polystyrenes. Macromolecules 2018, 51, 1488-1497.
  •  
  • 45. Yan, Z.-C.; Hossain, Md. D.; Monteiro, M. J.; Vlassopoulos, D. Viscoelastic Properties of Unentangled Multicyclic Polystyrenes. Polymers, 2018, 10, 973.
  •  
  • 46. Ree, B. J.; Satoh, Y.; Isono, T.; Satoh, T. Correlations of Nanoscale Film Morphologies and Topological Confinement of Three-armed Cage Block Copolymers. Polym. Chem. 2021, 12, 3451-3460.
  •  
  • 47. Xue, X.; Chen, Y.; Li, Y.; Liang, K.; Huang, W.; Yang, H.; Jiang, L.; Chen, F., Jiang, T. Lin, B.; Jiang, B.; Pu, H. Remarkable Untangled Dynamics Behavior of Multicyclic Branched Polystyrenes. Chem. Commun. 2021, 57, 399-402.
  •  
  • 48. Zhang, Y.; Yilin, W.; Zhang, L.; Zhang, K. Versatile Bimolecular Ring-closure Method for Cage-shaped Polymers. Macromolecules 2021, 54, 6901-6910.
  •  
  • 49. Zhang, S.; Tezuka, Y.; Zhang, Z.; Li, N.; Zhang, W.; Zhu, X. Recent Advances in the Construction of Cyclic Grafted Polymers and Their Potential Applications. Polymer Chemistry 2018, 9, 677-686.
  •  
  • 50. Maksimov, M. O.; Pan, S. J.; Link, J. Lasso Peptides: Structure, Function, Biosynthesis, and Engineering. Nat. Prod. Rep. 2012, 29, 996-1006.
  •  
  • 51. Öttinger, H. C. Stochastic Processes in Polymeric Fluids; Springer: Berlin, 1996.
  •  
  • 52. Liu, T. W. Flexible Polymer Chain Dynamics and Rheological Properties in Steady Flows. J. Chem. Phys. 1989, 90, 5826-5842.
  •  
  • 53. Kim, J. M.; Edwards, B. J.; Keffer, D. J.; Khomami, B. Dynamics of Individual Molecules of Linear Polyethylene Liquids Under Shear: Atomistic Simulation and Comparison with a Free-draining Bead-rod Chain. J. Rheol. 2010, 54, 283-310.
  •  
  • 54. Kim, J. M.; Keffer, D. J.; Kroger, M.; Edwards, B. J. Rheological and Entanglement Characteristics of Linear-chain Polyethylene Liquids in Planar Couette and Planar Elongational Flows. J. Non-Newtonian Fluid Mech. 2008, 152, 168-183.
  •  
  • 55. Kim, J. M. Rheological Characteristics of the Theta-shaped Polymer Under Shear Flow. Korea-Aus. Rheol. J. 2022, 34, 381-393.
  •  
  • 56. Bird, R. B.; Armstrong, R. C.; Hassager, O. Dynamics of Polymeric Liquids. Vol. 1 Fluid Mechanics; John Wiley & Sons: New York, 1987.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(5): 553-562

    Published online Sep 25, 2024

  • 10.7317/pk.2024.48.5.553
  • Received on May 20, 2024
  • Revised on May 20, 2024
  • Accepted on May 25, 2024

Correspondence to

  • Jun Mo Kim
  • Department of Chemical Engineering, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon, Kyoggi-do 16227, Korea

  • E-mail: junmokim@kgu.ac.kr