Article
  • Preparation and Characterization of Injectable Biohybrid Thermogel Scaffold for Cartilage Regeneration
  • Seong Eun Kim# , Hye-Eun Shim*, **,#, Sun-Woong Kang**, ***,† , and Kang Moo Huh*,†

  • Departments of Materials Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    *Departments of Polymer Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    **Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Korea
    ***Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea

  • 연골재생을 위한 주입형 바이오하이브리드 써모젤 스캐폴드 제조 및 특성분석
  • 김성은# · 심혜은*, **,# · 강선웅**, ***,† · 허강무*,†

  • 충남대학교 신소재공학과, *충남대학교 고분자공학과, **안전성평가연구소, ***과학기술연합대학원대학교 인체 및 환경 독성학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Garg, T.; Singh, O.; Arora, S.; Murthy, R. Scaffold: A Novel Carrier for Cell and Drug Delivery. Crit. Rev. Ther. Drug Carr. Syst. 2012, 29, 1-63.
  •  
  • 2. Hollister, S. J.; Porous scaffold design for tissue engineering. Nat. Mater. 2005, 4, 518-524.
  •  
  • 3. Ambekar, R. S.; Kandasubramanian B.; Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind. Eng. Chem. Res. 2019, 58, 6163-6194.
  •  
  • 4. Masri, S.; Fauzi, M. B.; Current Insight of Printability Quality Improvement Strategies in Natural-Based Bioinks for Skin Regeneration and Wound Healing. Polymers 2021, 13, 1011.
  •  
  • 5. Drury, J. L.; Mooney, D. J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 2003, 24, 4337-4351.
  •  
  • 6. Lee, K. Y.; Mooney, D. J. Hydrogels for Tissue Engineering. Chem. Rev. 2001, 101, 1869-1880.
  •  
  • 7. Ding, X.; Zhao, H.; Li, Y.; Lee, A. L.; Li, Z.; Fu, M.; Li, C.; Yang, Y. Y.; Yuan P. Synthetic Peptide Hydrogels as 3D Scaffolds for Tissue Engineering. Adv. Drug Deliv. Rev. 2020, 160, 78-104.
  •  
  • 8. Fan C.; Wang, D. A.; Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering. Tissue Eng. Part B Rev. 2017, 23, 451-461.
  •  
  • 9. Byun, H.; Jang, G. N.; Jeong, H.; Lee, J.; Huh, S. J.; Lee, S.; Kim, E.; Shin, H. Development of a Composite Hydrogel Incorporating Anti-inflammatory and Osteoinductive Nanoparticles for Effective Bone Regeneration. Biomater. Res. 2023, 27, 132.
  •  
  • 10. Schneider, K. H.; Goldberg, B. J.; Hasturk, O.; Mu, X.; Dötzlhofer, M.; Eder, G.; Theodossiou, S.; Pichelkastner, L.; Riess, P.; Rohringer, S.; Kiss, H.; Andreas H. Woller, T.; Fitzpatrick, V.; Enayati, M.; Podesser, B. K.; Bergmeister H.; Kaplan D. L. Silk Fibroin, Gelatin, and Human Placenta Extracellular Matrix-based Composite Hydrogels for 3D Bioprinting and Soft Tissue Engineering. Biomater. Res. 2023, 27, 117.
  •  
  • 11. Do, N. T.; Lee, S. Y.; Lee, Y. S.; Shin, C.; Kim, D.; Lee, T. G.; Son, J. G.; Kim, S. H. Time-sequential Fibroblast-to-myofibroblast Transition in Elastin-variable 3D Hydrogel Environments by Collagen Networks. Biomater. Res. 2023, 27, 103.
  •  
  • 12. Hunt, J. A.; Chen, R.; Veena, T. V. Bryan, N. Hydrogels for Tissue Engineering and Regenerative Medicine. J. Mater. Chem. B 2014, 2, 5319-5338.
  •  
  • 13. Gyles, D. A.; Castro, L. D.; Silva Jr, J. O. C.; Ribeiro-Costa, R. M. A Review of the Designs and Prominent Biomedical Advances of Natural and Synthetic Hydrogel Formulations. Eur. Polym. J. 2017, 88, 373-392.
  •  
  • 14. Nguyen, K. T.; West, J. L. Photopolymerizable Hydrogels for Tissue Engineering Applications. Biomaterials 2002, 23, 4307-4314.
  •  
  • 15. Zhang, Y.; Yu, J.; Ren, K.; Zuo, J.; Ding, J.; Chen, X. Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules 2019, 20, 1478-1492.
  •  
  • 16. Taheri, S.; Ghazali, H. S.; Ghazali, Z. S.; Bhattacharyya, A.; Noh, I. Progress in Biomechanical Stimuli on the Cell-encapsulated Hydrogels for Cartilage Tissue Regeneration. Biomater. Res. 2023, 27, 22.
  •  
  • 17. Gil, E. S.; Hudson, S. M. Stimuli-reponsive Polymers and Their Bioconjugates. Prog. Polym. Sci. 2004, 29, 1173-1222.
  •  
  • 18. Schuetz, Y. B.; Gurny, R.; Jordan, O. A Novel Thermoresponsive Hydrogel Based on Chitosan. Eur. J. Pharm. Biopharm. 2008, 68, 19-25.
  •  
  • 19. Soliman, K. A.; Ullah, K.; Shah, A.; Jones, D. S.; Singh, T. R. R. Poloxamer-based in Situ Gelling Thermoresponsive Systems for Ocular Drug Delivery Applications. Drug Discov. Today 2019, 24, 1575-1586.
  •  
  • 20. Hu, Y.; Jiang, X.; Ding, Y.; Zhang, L.; Yang, C.; Zhang, J.; Chen, J.; Yang, Y. Preparation and Drug Release Behaviors of Nimodipine-loaded Poly(caprolactone)-poly(ethylene oxide)-polylactide Amphiphilic Copolymer Nanoparticles. Biomaterials 2003, 24, 2395-2404.
  •  
  • 21. Mosqueira, V. C. F.; Legrand, P.; Morgat, J. L.; Vert, M.; Mysiakine, E.; Gref, R.; Devissaguet, J. P.; Barratt, G. Biodistribution of Long-circulating PEG-grafted Nanocapsules in Mice: Effects of PEG Chain Length and Density. Pharm. Res. 2001, 18, 1411-1419.
  •  
  • 22. Cheung, H.Y.; Lau, K. T.; Lu, T. P.; Hui D. A Critical Review on Polymer-based Bio-engineered Materials for Scaffold Development. Compos. B: Eng. 2007, 38, 291-300.
  •  
  • 23. Ban, E.; Park, M.; Jeong, S.; Kwon, T.; Kim, E. H.; Jung, K.; Kim, A. Poloxamer-Based Thermoreversible Gel for Topical Delivery of Emodin: Influence of P407 and P188 on Solubility of Emodin and Its Application in Cellular Activity Screening. Molecules 2017, 22, 246.
  •  
  • 24. Dumortier, G.; Grossiord, J. L.; Agnely, F.; Chaumeil, J. C. A Review of Poloxamer 407 Pharmaceutical and Pharmacological Characteristics. Pharm. Res. 2006, 23, 2709-2728.
  •  
  • 25. Lee, E. J.; Kang, E.; Kang, S. W.; Huh, K. M. Thermo-irreversible Glycol Chitosan/hyaluronic Acid Blend Hydrogel for Injectable Tissue Engineering. Carbohydr. Polym. 2020, 244, 116432.
  •  
  • 26. Cho, I. S.; Oh, H. M.; Cho, M. O.; Jang, B. S.; Cho, J. K.; Park, K. H.; Kang, S. W.; Huh, K. M. Synthesis and Characterization of Thiolated Hexanoyl Glycol Chitosan as a Mucoadhesive Thermogelling Polymer. Biomater. Res. 2018, 22, 30.
  •  
  • 27. Lee, C. T.; Kung, P. H.; Lee, Y. D. Preparation of Poly(vinyl alcohol)-chondroitin Sulfate Hydrogel as Matrices in Tissue Engineering. Carbohydr. Polym. 2005, 61, 348-354.
  •  
  • 28. Bali, J. P.; Cousse, H.; Neuzil, E. Biochemical Basis of the Pharmacologic Action of Chondroitin Sulfates on the Osteoarticular System. Semin. Arthritis Rheum. 2001, 31, 58-68.
  •  
  • 29. Yang, J.; Shen, M.; Wen, H.; Luo, Y.; Huang, R.; Rong, L.; Xie, J. Recent Advance in Delivery System and Tissue Engineering Applications of Chondroitin Sulfate. Carbohydr. Polym. 2020, 230, 115650.
  •  
  • 30. Ustyuzhanina, N. E.; Bilan, M. I.; Panina, E. G.; Sanamyan, N. P.; Dmitrenok, A. S.; Tsvetkova, E. A.; Usov, A. I. Structure and Anti-inflammatory Activity of a New Unusual Fucosylated Chondroitin Sulfate from Cucumaria Djakonovi. Mar. Drugs 2018, 16, 389.
  •  
  • 31. Zhu, W.; Ji, Y.; Wang, Y.; He, D.; Yan, Y.; Su, N.; Zhang, C.; Xing, X. H. Structural Characterization and in vitro Antioxidant Activities of Chondroitin Sulfate Purified from Andrias Davidianus Cartilage. Carbohydr. Polym. 2018, 196, 398-404.
  •  
  • 32. Wu, F.; Zhou, C.; Zhou, D.; Ou, S.; Liu, Z.; Huang, H. Immune-enhancing Activities of Chondroitin Sulfate in Murine Macrophage RAW 264.7 Cells. Carbohydr. Polym. 2018, 198, 611-619.
  •  
  • 33. Kasravi, M.; Ahmadi, A.; Babajani, A.; Mazloomnejad, R.; Hatamnejad, M. R.; Shariatzadeh, S.; Bahrami, S; Niknejad, H. Immunogenicity of Decellularized Extracellular Matrix Scaffolds: a Bottleneck in Tissue Engineering and Regenerative Medicine. Biomater. Res. 2023, 27, 10.
  •  
  • 34. Lee, G.; Ko, Y. G.; Bae, K. H.; Kurisawa, M.; Kwon, O. K.; Kwon, O. H. Green Tea Catechin-grafted Silk Fibroin Hydrogels with Reactive Oxygen Species Scavenging Activity for Wound Healing Applications. Biomater. Res. 2022, 26, 62.
  •  
  • 35. Krichen, F.; Bougatef, H.; Sayari, N.; Capitani, F.; Amor, I. B.; Koubaa, I.; Maccari, F.; Mantovani, V.; Galeotti, F.; Bougatef, A. Isolation, Purification and Structural Characterestics of Chondroitin Sulfate from Smooth Hound Cartilage: In vitro Anticoagulant and Antiproliferative Properties. Carbohydr. Polym. 2018, 197, 451-459.
  •  
  • 36. Sun, Y.; Zhang, G.; Liu, Q.; Liu, X.; Wang, L.; Wang, J.; Liang, L. Chondroitin Sulfate from Sturgeon Bone Ameliorates Pain of Osteoarthritis Induced by Monosodium Iodoacetate in Rats. Int. J. Biol. Macromol. 2018, 117, 95-101.
  •  
  • 37. Kwon, H. J.; Han, Y. Chondroitin Sulfate-based Biomaterials for Tissue Engineering. Turk. J. Biol. 2016, 40, 290-299.
  •  
  • 38. Park, S. G.; Li, M. X.; Eom, J. H.; Suh, E. Y.; Cho, W. K.; Joung, Y. K.; Huh, K. M. Synthesis and Characterization of Gallic Acid Conjugated Glycol Chitosans for Tissue Adhesive Applications. Polym. Kor. 2021, 45, 372-379.
  •  
  • 39. Cho, M. O.; Li, Z.; Shim, H. E.; Cho, I. S.; Nurunnabi, M.; Park, H.; Lee, K. Y.; Moon, S. H.; Kim, K. S.; Kang, S. W.; Huh, K. M. Bioinspired Tuning of Glycol Chitosan for 3D Cell Culture. NPG Asia Mater. 2016, 8, e309.
  •  
  • 40. Cho, I. S.; Cho, M. O.; Li, Z.; Nurunnabi, M.; Park, S. Y.; Kang, S. W.; Huh, K. M. Synthesis and Characterization of a New Photo-crosslinkable Glycol Chitosan Thermogel for Biomedical Applications. Carbohydr. Polym. 2016, 144, 59-67.
  •  
  • 41. Bosworth, L. A.; Downes, S. Physicochemical Characterisation of Degrading Polycaprolactone Scaffolds. Polym. Degrad. Stab. 2010, 95, 2269-2276.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(5): 518-529

    Published online Sep 25, 2024

  • 10.7317/pk.2024.48.5.518
  • Received on Mar 25, 2024
  • Revised on May 23, 2024
  • Accepted on May 28, 2024

Correspondence to

  • Sun-Woong Kang**, *** , and Kang Moo Huh*
  • *Departments of Polymer Science and Engineering, Chungnam National University, 99, Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
    **Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon 34114, Korea
    ***Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34114, Korea

  • E-mail: swkang@kitox.re.kr, khuh@cnu.ac.kr