Article
  • Kinetics and Synergistic Effects in the Pyrolysis Process of Hybrid Plastics and Product Analysis
  • Zhang Cangang*, **,† and Ma Xinglong*

  • *Dongying Vocational College of Science and Technology, No. 361, Yingbin Road, Guangrao County, Dongying City, Shandong Province, China, 257300, China
    **City University Malaysia, Menara City U, No. 8, Jalan 51A/223

  • 하이브리드 플라스틱 열분해 공정의 동역학 및 시너지 효과와 제품 분석
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Al-Salem, S. M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). J. Environ. Manag. 2017, 197, 177-198.
  •  
  • 2. Gopinath, K. P.; Nagarajan, V. M.; Krishnan, A.; Malolan, R. A Critical Review on the Influence of Energy, Environmental and Economic Factors on Various Processes Used to Handle and Recycle Plastic Wastes: Development of a Comprehensive Index. J. Clean. Prod. 2020, 274, 123031.
  •  
  • 3. Armenise, S.; Syieluing, W.; Ramírez-Velásquez, J. M.; Launay, F.; Muoz, M. Plastic Waste Recycling via Pyrolysis: A Bibliometric Survey and Literature Review. J. Anal. Appl. Pyrolysis2021, 158, 105265.
  •  
  • 4. Kumar, S.; Panda, A. K.; Singh, R. K. A Review on Tertiary Recycling of High-density Polyethylene to Fuel. Resour. Conserv. Recycl. 2011, 55, 893-910.
  •  
  • 5. Kang, H. K.; Yu, M. J.; Park, S. H.; Jeon, J. K.; Kim, S. C.; Park, Y. K. Catalytic Pyrolysis of Miscanthus and Random Polypropylene over SAPO-11. Polym. Korea 2013, 37, 379-386.
  •  
  • 6. Aznar, M. P.; Caballero, M. A.; Sancho, J. A.; Francés, E. Plastic Waste Elimination by co-gasification with Coal and Biomass in Fluidized Bed with Air in Pilot Plant. Fuel Process. Technol. 2006, 87, 409-420.
  •  
  • 7. Saikrishnan, S.; Jubinville, D.; Tzoganakis, C.; Tizazu, H. Thermo-mechanical Degradation of Polypropylene (PP) and Low-density Polyethylene (LDPE) Blends Exposed to Simulated Recycling. Polym. Degrad. Stab. 2020, 182, 109390.
  •  
  • 8. Sharuddin, S.; Abnisa, F.; Daud, W.; Aroua, M. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308-326.
  •  
  • 9. Sharuddin, S.; Abnisa, F.; Daud, W.; Aroua, M. Production, Characterization and Fuel Properties of Alternative Diesel Fuel From Pyrolysis of Waste Plastic Grocery Bags. Fuel Process. Technol.2014, 122, 79-90.
  •  
  • 10. Passamonti, F. J.; Sedran, U. Recycling of Waste Plastics Into Fuels. LDPE Conversion in FCC. Appl. Catal. B: Environ. 2012, 125, 499-506.
  •  
  • 11. Bridgwater, A. V. Review of Fast Pyrolysis of Biomass and Product Upgrading. Biomass Bioenergy 2012, 38, 68-94.
  •  
  • 12. Senthil, K. P.; Bharathikumar, M.; Prabhakara, C.; Vijayan, S.; Ramakrishnan, K. Conversion of Waste Plastics Into Low-emissive Hydrocarbon Fuels Through Catalytic Depolymerization in a New Laboratory Scale Batch Reactor. Int. J. Energy Envir. Eng. 2017, 8, 167-173.
  •  
  • 13. Nanda, S.; Berruti, F. Thermochemical Conversion of Plastic Waste to Fuels: A Review. Environ. Chem. Lett. 2021, 19, 123-148.
  •  
  • 14. Kumar, A.; Sharma, M. P. GHG Emission and Carbon Sequestration Potential from MSW of Indianmetro Cities. Urban Climate 2014, 8, 30-41.
  •  
  • 15. Brebu, M.; Bhaskar, T.; Murai, K.; Muto, K.; Sakata, Y.; Uddin, M. A. Thermal Degradation of PE and PS Mixed with ABS-Br and Debromination of Pyrolysis Oil by Fe and Ca-based Catalysts. Polym. Deg. Stab. 2004, 84, 459-467.
  •  
  • 16. Lee, D. H.; Choi, H. J.; Kim, D. S.; Lee, B. H. Distribution Characteristics of Pyrolysis Products of Polyethylene. Polym. Korea 2008, 32, 157-162.
  •  
  • 17. Dogu, O.; Pelucchi, M.; de Vijver, R. V.; Lee, D. H.; Choi, H. J.; Kim, D. S. The Chemistry of Chemical Recycling of Solid Plastic Waste via Pyrolysis and Gasification: State-of-the-art, Challenges, and Future Directions. Prog. Energ. Combust. Sci. 2021, 84, 1-59.
  •  
  • 18. Pan, D.; Su, F.; Liu, C.; Guo, Z. Research Progress for Plastic Waste Management and Manufacture of Value-added Products. Ad. Compos. Hybrid Mater.2020, 3, 443-461.
  •  
  • 19. Xayachak, T.; Haque, N.; Parthasarathy, R. King, S.; Emami, N.; Lau, D.; Pramanik, B. K. Pyrolysis for Plastic Waste Management: An Engineering Perspective. J. Environ. Chem. Eng.2022, 10, 108865.
  •  
  • 20. Huang, S.; Wang, H.; Ahmad, W.; Ahmad, A.; Vatin, N. I.; Mohamed, A. M.; Deifalla, A. F.; Mehmood, I. Plastic Waste Management Strategies and Their Environmental Aspects: A Scientometric Analysis and Comprehensive Review. Int. J. Environmental Res. Public Health 2022, 19, 4556.
  •  
  • 21. Sogancioglu, M.; Yel, E.; Ahmetli, G. Investigation of the Effect of Polystyrene (PS) Waste Washing Process and Pyrolysis Temperature on (PS) Pyrolysis Product Quality. Energy Procedia 2017, 118, 189-194.
  •  
  • 22. Sogancioglu, M.; Ahmetli, G.; Yel, E. A Comparative Study on Waste Plastics Pyrolysis Liquid Products Ouantity and Energy Recovery Potential. Energy Procedia 2017, 118, 221-226.
  •  
  • 23. Miandad, R.; Barakat, M. A.; Aburiazaiza, A. S.; Rehan, M.; Ismail, I. M. I.; Nizami, A. S. Effect of Plasticwaste Types on Pyrolysis Liquid Oil. Int. Biodeter. Biodegr. 2017, 119, 239-252.
  •  
  • 24. Supriyanto, Paivi Ylitervo, Tobias Richards. Gaseous Productsfrom Primary Reactions of Fast Plastic Pyrolysis. J. Anal. Appl. Pyrol. 2021, 158, 10528.
  •  
  • 25. Miranda, R.; Yang, J.; Roy, C.; Vasile, C. Vacuum Pyrolysis of PVC I. Kinetic Study. Polym. Degrad. Stab. 1999, 64, 127-144.
  •  
  • 26. Wu, J.; Chen, T.; Luo, X.; Han, D.; Wang, Z.; Wu, J. TG/FTIR Analysis on Co-pyrolysis Behaviorof PE, PVC and PS. Waste Manag.2014, 34, 676-682.
  •  
  • 27. Yin, F.; Zhuang, Q.; Chang, T.; Zhang, C.; Sun, H.; Sun, Q.; Wang, C.; Li, L. Study on Pyrolysis Characteristics and Kinetics of Mixed Plastic Waste. J. Mater. Cycles Waste Manag.2021, 23, 1984-1994.
  •  
  • 28. Lu, C.; Xiao, H., Chen, X. Simple Pyrolysis of Polystyrene Into Valuable Chemicals. e-Polymers 2021, 21, 428-432.
  •  
  • 29. Li, D.; Lei, S.; Wang, P.; Zhong, L.; Ma, W.; Chen, G. Study on the Pyrolysis Behaviors of Mixed Waste Plastics. Renew. Energ.2021, 173, 662-674.
  •  
  • 30. Yao, Z.; Yu, S.; Su, W.; Wu,W.; Tang, J.; Qi, W. Kinetic Studies on the Pyrolysis of Plastic Waste Using a Combination of Model-fitting and Model-free Methods. Waste Manage. Res.2020, 38, 1-129.
  •  
  • 31. Nisar, J.; Ali, G.; Shah, A.; Farooqi, Z. H.; Khan, R. A.; Iqbal, M.; Gul, M. Pyrolysis of Waste Tire Rubber: A Comparative Kinetic Study Using Different Models. Energ. Source. Part A. 2020, 42, 1-8.
  •  
  • 32. Shan, T.; Bian, H.; Wang, K.; Li, Z.; Qiu, J.; Zhu, D.; Wang, C.; Tian, X. Study on Pyrolysis Characteristics and Kinetics of Mixed Waste Plastics Under Different Atmospheres. Thermochim. Acta. 2023, 722, 179467.
  •  
  • 33. Kai, X.; Yangb, T.; Shena, S.; Li, R. TG-FTIR-MS Study of Synergistic Effects During co-pyrolysis of Corn Stalk and High-density Polyethylene (HDPE). Energ. Convers. Manage.2019, 181, 202-213.
  •  
  • 34. Xu, F.; Wang, B.; Yang, D.; Hao, J.; Qiao, Y.; Tian, Y. Thermal Degradation of Typical Plastics Under High Heating Rate Conditions by TG-FTIR: Pyrolysis Behaviors and Kinetic Analysis. Energy Convers. Manag.2018, 171, 1106-1115.
  •  
  • 35. Tondl, G.; Bonell, L.; Pfeifer, C. Thermogravimetric Analysis and Kinetic Study of Marine Plastic Litter. Mar. Pollut. Bull.2018, 133, 472-477.
  •  
  • 36. Williams, P. T.; Slaney, E. J. Analysis of Products From the Pyrolysis and Liquefaction of Single Plastics and Waste Plastic Mixtures. Resour. Conserv. Recycl. 2007, 51, 754-769.
  •  
  • 37. Liu, S.; Yu, J.; Bikane, K.; Chen, T.; Ma, C.; Wang, B.; Sun, L. Rubber Pyrolysis: Kinetic Modeling and Vulcanization Effects. Energy 2018, 155, 215-225.
  •  
  • 38. Shahid, A.; Ishfaq, M.; Ahmad, M. S.; Farooq, M.; Hui, Z.; Batawi, A. H.; Shafi, M. E.; Aloqbi, A. A.; Gull, M.; Mehmood, M. A. Bioenergy Potential of the Residual Microalgal Biomass Produced in City Wastewater Assessed Through Pyrolysis, Kinetics and Thermodynamics Study to Design Algal Biorefinery. Bioresour. Technol. 2019, 289, 121701.
  •  
  • 39. Hadigheh, S. A.; Wei, Y.; Kashi, S. Optimisation of CFRP Composite Recycling Process Based on Energy Consumption, Kinetic Behaviour and Thermal Degradation Mechanism of Recycled Carbon Fibre. J. Clean. Prod. 2021, 292, 125994.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(5): 494-502

    Published online Sep 25, 2024

  • 10.7317/pk.2024.48.5.494
  • Received on Mar 12, 2024
  • Revised on Jun 20, 2024
  • Accepted on Jun 20, 2024

Correspondence to

  • Zhang Cangang
  • *Dongying Vocational College of Science and Technology, No. 361, Yingbin Road, Guangrao County, Dongying City, Shandong Province, China, 257300, China
    **City University Malaysia, Menara City U, No. 8, Jalan 51A/223

  • E-mail: 291181353@qq.com