Article
  • Study on the Thermal and Physical Properties of Nylon 6/Carbon Filler Composites Applying Master-batch
  • Hoe Do Jeong and Youn Cheol Kim

  • Major in Polymer Science and Engineering, Kongju National University, 1223-34 Cheonan way, Cheonan 31080, Korea

  • 마스터배치가 적용된 나일론 6/탄소필러 복합체의 물성 및 열적특성 연구
  • 정회도 · 김연철

  • 공주대학교 신소재공학부 고분자공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Günter, F. J.; Wassiliadis, N. State of the Art of Lithium-Ion Pouch Cells in Automotive Applications: Cell Teardown and Characterization. J. Electrochem. Soc. 2022, 169, 030515.
  •  
  • 2. An, S. J.; Li, J.; Daniel, C.; Mohanty, D.; Nagpure, S.; Wood, D. L. The State of Understanding of the Lithium-Ion-Battery Graphite Solid Electrolyte Interphase (sei) and its Relationship to Formation Cycling. Carbon 2016, 105, 52-76.
  •  
  • 3. Zhang, X.; Chang, X.; Shen, Y.; Xiang, Y. Electrochemical-Electrical Tthermal Modeling of a Pouch-Type Lithium Ion Battery: An Application to Optimize Temperature Distribution. J. Energy Storage 2017, 11, 249-257.
  •  
  • 4. Kang, K.-Y.; Lee, Y.-G.; Shin, D. O.; Kim, J.-C.; Kim, K. M. Performance Improvements of Pouch-Type Flexible Thin-Film Lithium-Ion Batteries by Modifying Sequential Screen-Printing Process, Electrochimica Acta 2014, 138, 294-301.
  •  
  • 5. Zhang, L.; Liu, L. Hierarchically Hydrogen-Bonded Graphene/Polymer Interfaces with Drastically Enhanced Interfacial Thermal Conductance, Nanoscale 2019, 11, 3656-3664.
  •  
  • 6. Kim, J. S.; Kim, Y. S.; Kim, Y. C. Effect of Carbon Fiber Orientation on the Physical Properties and Crystallization Behavior of Nylon 66/Carbon Filler Composites, Polym. Korea 2019, 43, 547-552.
  •  
  • 7. Kotal, M.; Bhowmick, A. K. Polymer Nanocomposites from Modified Clays: Recent Advances and Challenges. Prog. Polym. Sci. 2015, 51, 127-187.
  •  
  • 8. Yang, B.; Shi, Y.; Miao, J. B.; Xia, R., Su, L. F.; Qian, J. S.; Chen, P.; Zhang, Q. L.; Liu, J. W. Evaluation of Rheological and Thermal Properties of Polyvinylidene Fluoride (PVDF)/Graphene Nanoplatelets (GNP) Composites, Polym. Test. 2018, 67, 122-135.
  •  
  • 9. Watt, E.; Abdelwahab, M. A.; Snowdon, M. R.; Mohanty, A. K.; Khalil, H.; Misra, M. Hybrid Biocomposites from Polypropylene, Sustainable Biocarbon and Graphene Nanoplatelets,”Sci. Rep. 2020,10, 1-13.
  •  
  • 10. Alam, F.; Choosri, M.; Gupta, T. K.; Varadarajan, K. M.; Choia, D.; Kumar, S. Electrical, Mechanical and Thermal Properties of Graphene Nanoplatelets Reinforced UHMWPE Nanocomposites, Mater. Sci. Eng. B 2019, 241, 82-91.
  •  
  • 11. Park, S.-Y.; Hwang, J.-Y.; Park, Y. S.; Kang, S. B. A Review of Graphene Nanoplatelets in Nanocomposites: Dispersion, Compo. Res. 2020, 33, 321-328.
  •  
  • 12. Kim, J.; Cha, J.; Hoon, G.; Yoo, S. C.; Ryu, S.; Hong, S. H. Polymer Nanocomposites: Fabrication of Graphene Nanoplatelet/Epoxy Nanocomposites for Lightweight and High-Strength Structural Applications, Part. Part. Syst. Char. 2018, 35, 1700412.
  •  
  • 13. Prolongo, S. G.; Moriche, R.; Jiménez-Suárez, A.; Sánchez, M.; Ureña, A. Advantages and Disadvantages of the Addition of Graphene Nanoplatelets to Epoxy Resins, Euro. Polym. J. 2014, 61, 206-214.
  •  
  • 14. Sun, S.; Guo, L.; Chang, X.; Liu, Y.; Niu, S.; Lei Y.; Liu, T.; Hu, X. A Wearable Strain Sensor Based on the ZnO/graphene Nanoplatelets Nanocomposite with large Linear Working Range, J. Mater. Sci. 2019, 54, 7048-7061.
  •  
  • 15. Xiang, J.; Drzal, L. T. Templated Growth of Polyaniline on Exfoliated Graphene Nanoplatelets (GNP) and Its Thermoelec-A Review of Graphene Nanoplatelets in Nanocomposites: Dispersion 327 tric Properties, Polymer 2012, 53, 4202-4210.
  •  
  • 16. Maiti, S.; Shrivastava, N. K.; Suin, S.; Khatua, B. Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material through Graphite Nanoplate-MWCNT-Graphite Nanoplate Networking, ACS Appl. Mater. Inter. 2013, 5, 4712-4724.
  •  
  • 17. Su, F. H.; Huang, H. X. Influence of Polyfunctional Monomer on Melt Strength and Rheology of Long-Chain Branched Polypropylene by Reactive Extrusion. J. Appl. Polym. Sci. 2010, 116, 2557-2565.
  •  
  • 18. Tian, J.; Yu, W.; Zhou, C. The Preparation and Rheology Characterization of Long Chain Branching Polypropylene. Polymer 2006, 47, 7962-7969.
  •  
  • 19. Mayoral, B.; Harkin-Jones, E.; Khanam, P. N.; AlMaadeed, M. A.; Ouederni, M.; Hamilton, A. R.; Sun, D. Melt Processing and Characterization of Polyamide 6/Graphene Nanoplatelet Composites. Rsc. Adv. 2015, 5, 52395-52409.
  •  
  • 20. Mahmud, M. B.; Anstey, A.; Shaayegan, V.; Lee, P. C.; Park, C. B. Enhancing the Mechanical Performance of PA6 Based Composites by Altering their Crystallization and Rheological Behavior via in-situGenerated PPS Nanofibrils, Composites Part B. 2020, 195, 108067.
  •  
  • 21. Liu, D.; Zheng, Q.; Lu, S.; Li, C.; Lu, P.; Yu, J. A New Method to Prepare Low Melting Point Polyamide-6 and Study Crystallization Behavior of Polyamide-6/calcium Chloride Complex by Rheological Method, J. Appl. Polym. Sci. 2015, 132. 850-854.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2024; 48(3): 305-311

    Published online May 25, 2024

  • 10.7317/pk.2024.48.3.305
  • Received on Dec 12, 2023
  • Revised on Feb 6, 2024
  • Accepted on Feb 14, 2024

Correspondence to

  • Youn Cheol Kim
  • Major in Polymer Science and Engineering, Kongju National University, 1223-34 Cheonan way, Cheonan 31080, Korea

  • E-mail: younkim@kongju.ac.kr