Article
  • Characterization and Investigation of Electrical Properties of Epoxidized Soybean Oil-tri Salicyl Borate Polymer
  • Gökhan Çayli , Hüseyin Esen*, Demet Gürbüz**, Cengiz Polat Uzunoğlu***, Adem Çinarli**, and Cengiz Kahraman

  • Istanbul University-Cerrahpaşa, Engineering Faculty, Department of Engineering Sciences, Istanbul 34320, Turkey
    *Kocaeli University, Kocaeli Vocational School, Chemistry and Chemical Processing Technologies, Chemical Technology Program, Kocaeli 41140, Turkey
    **Istanbul University-Cerrahpaşa, Engineering Faculty, Department of Chemistry, Istanbul 34320, Turkey
    ***Istanbul University-Cerrahpaşa, Engineering Faculty, Department of Electrical Engineering, Istanbul 34320, Turkey

  • 에폭시화된 대두유와 Trisalicyl Borate 고분자의 전기적 특성 분석 및 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Kahraman, C.; Orobello, C.; Cirella, G. T. Changing Dynamics with COVID-19: Future Outlook. In Human Settlements. Advances in 21st Century Human Settlements, Cirella, G.T., Ed.; Springer: Singapore, 2021; pp 235-252.
  •  
  • 2. Lam, D. How the World Survived the Population Bomb: Lessons From 50 Years of Extraordinary Demographic History. Demography 2011, 48, 1231-1262.
  •  
  • 3. Cayli, G.; Kusefoglu, S. Isothiocyanates of Plant Oil Triglycerides: Synthesis, Characterization and Polymerization with Polyols and Polyamines. J. Appl. Polym. Sci. 2010, 116, 125-131.
  •  
  • 4. Park, S. J.; Jin, F. L.; Lee, J. R. Thermal and Mechanical Properties of Tetrafunctinal Epoxy Resin Toughened with Epoxidized Soybean Oil. Mater. Sci. Eng. A 2004, 374, 109-114.
  •  
  • 5. Meier, M. A. R. Merhathesis with Oleochemicals: New Approaches for the Utilization of Plant Oils as Renewable Resources in Polymer Science. Macromol. Chem. Physic. 2019, 210, 1073-1079.
  •  
  • 6. Cayli, G.; Kusefoglu, S. Polymerization of Linseed oil with Phenolic Resins. J. Appl. Polym. Sci. 2010, 118, 849-856.
  •  
  • 7. Adhavaryu, A.; Erhan, S. Z. Epoxidized Soybean Oil as a Potential Source of High Temperature Lubricants. Ind. Crop. Prod. 2002, 15, 247-254.
  •  
  • 8. Ma, S.; Webster, D. C. Naturally Occurring Acids as Cross-Linkers to Yield VOC-Free, High Performance, Fully Bio-Based, Degradable Thermosets. Macromolecules 2015, 48, 7127-7137.
  •  
  • 9. Silva, J. A. C.; Grilo, L. M.; Gandini, A.; Lacerda, T. M. The Prospering of Macromolecular Materials Based on Plant Oils Within the Blooming Field of Polymers from Renewable Resources. Polymers 2021, 13, 1722.
  •  
  • 10. Khot, S. N.; Lascala, J. J.; Can, E.; Morye, S. S.; Williams, G. I.; Palmese, G. R.; Kusefoglu, S. H.; Wool, R. P. Development and Application of Triglyceride-based Polymers and Composites. J. Appl. Polym. Sci. 2001, 82, 703-723.
  •  
  • 11. Crivello, J. V.; Narayan, R. Epoxidized Triglycerides as Renewable Monomers in Photoinitiated Cationic Polymerization. Chem. Mater. 1992, 4, 692-699.
  •  
  • 12. Cayli, G.; Kusefoglu, S. Polymerization of Acrylated Epoxidized Soybean Oil with Phenol Furfural Resins via Repeated forward and Retro Diels-Alder Reactions. J. Appl. Polym. Sci. 2011, 120, 1707-1712.
  •  
  • 13. Zeng, R. T.; Wu, Y.; Li, Y. D.; Wang, M.; Zeng, J. B. Curing Behavior of Epoxidized Soybean Oil with Biobased Dicarboxylic Acids, Polym. Test. 2017, 57, 281-287.
  •  
  • 14. Yang, J.; Ching, Y. C.; Ching, K. Y.; Ran, X.; Al-Hada, N. M.; Sui, X.; Wei, Y.; Yu, J.; Wang, J.; Zhou, J. Preparation and Characterization of Starch-Based Bioplastic Films Modified by Citric Acid-Epoxidized Soybean Oil Oligomers. J. Polym. Environ. 2023, 31, 954-964.
  •  
  • 15. Doğan, E.; Küsefoğlu, S. Synthesis and In Situ Foaming of Biodegradable Malonic Acid ESO Polymers. J. Appl. Polym. Sci. 2008, 110, 1129-1135.
  •  
  • 16. Alemdar, N.; Tuncer Erciyes, A. T.; Bicak, N. Preparation of Unsaturated Polyesters Using Boric Acid as Mild Catalyst and Their Sulfonated Derivatives as New Family of Degradable Polymer Surfactants, Polymer 2010, 51, 5044-5050.
  •  
  • 17. Brown, H. C.; Mead, E. J.; Shoaf, C. J. Convenient Procedures for the Preparation of Alkyl Borate Esters. J. Am. Chem. Soc. 1956 78, 3613-3614.
  •  
  • 18. Steinberg, H.; Hunter, D. L. Preparation and Rate of Hydrolysis of Boric Acid Esters. Ind. Eng. Chem. 1957, 49, 174-181.
  •  
  • 19. Demirhan, Y.; Yurtseven, R.; Usta, N. The Effect of Boric Acid on Flame Retardancy of Intumescent Flame Retardant Polypropylene Composites Including Nanoclay. J. Thermoplastic Compos. Mater. 2023, 36, 1187-1214.
  •  
  • 20. Houston, T. A.; Wilkinson, B. L.; Blanchfield, J. T. Boric Acid Catalyzed Chemoselective Esterification of α-Hydroxycarboxylic Acids. Org. Lett. 2004, 6, 679-681.
  •  
  • 21. Sahebi, H. Z. Lashgari, V. A.; Mohammadi, M. H. D.; Uner, D.; Pourabdouli, M. Microstructure, Resistivity, and Shear Strength of Electrically Conductive Adhesives Made of Silver-coated Copper Powder. Microelectron. Reliab. 2021, 127, 114400.
  •  
  • 22. Suryanto, B.; Takaoka, H.; McCater, W. J.; Saraireh, D.; Taha, H. Impedance Measurements on An Engineered Cementitious Composite: A Critical Evaluation of Testing Protocols. Measurement 2018, 129, 445-456.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2023; 47(5): 606-612

    Published online Sep 25, 2023

  • 10.7317/pk.2023.47.5.606
  • Received on May 5, 2023
  • Revised on Jun 19, 2023
  • Accepted on Jun 26, 2023

Correspondence to

  • Gökhan Çayli
  • Istanbul University-Cerrahpaşa, Engineering Faculty, Department of Engineering Sciences, Istanbul 34320, Turkey

  • E-mail: gokhan.cayli@iuc.edu.tr