Article
  • Artificial Neural Network for Prediction of Mechanical Properties of HDPE Based Nanodiamond Nanocomposite
  • Santosh Kumar Sahu and P. S. Rama Sreekanth

  • School of Mechanical Engineering, VIT-AP University, Inavolu, Amaravati Andhra Pradesh, India 522237

  • HDPE 기반의 나노다이아몬드 복합소재의 물성 예측을 위한 인공신경망 연구
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Sahu, S. K.; Badgayan, N. D.; Samanta, S.; Sreekanth, P. R. Experimental Investigation on Multidimensional Carbon Nanofiller Reinforcement in HDPE: An Evaluation of Mechanical Performance. Mater. Today: Proc. 2020, 24, 415-421.
  •  
  • 2. Badgayan, N. D.; Samanta, S.; Sahu, S. K.; Siva, S. V.; Sadasivuni, K. K.; Sahu, D.; Sreekanth, P. R. Tribological Behaviour of 1D and 2D Nanofiller Based High Densitypoly-ethylene Hybrid Nanocomposites: A Run-in and Steady State Phase Analysis. Wear 2017, 376, 1379-1390.
  •  
  • 3. Yu, L.; Wei, D.; Zheng, A.; Xu, X.; Guan, Y. An Investigation on Tribological Properties and Mechanical Properties of UHMWPE/Polycrystalline Mullite Fiber. Polym. Bull. 2022, DOI: 10.1007/s00289-022-04197-z.
  •  
  • 4. Sahu, S. K.; Badgayan, N. D.; Sreekanth, P. R. Rheological Properties of HDPE Based Thermoplastic Polymeric Nanocomposite Reinforced with Multidimensional Carbon-based Nanofillers. Biointerface Res. Appl. Chem. 2022, 12, 5709-5715.
  •  
  • 5. Obeid, A.; Roumie, M.; Badawi, M. S.; Awad, R. Evaluation of the Effect of Different Nano-Size of WO3 on the Structural and Mechanical Properties of HDPE. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1506-1519.
  •  
  • 6. Honaker, K.; Vautard, F.; Drzal, L. T. Influence of Processing Methods on the Mechanical and Barrier Properties of HDPE-GNP Nanocomposites. Adv. Compos. Hybrid Mater. 2021, 4, 492-504.
  •  
  • 7. Olesik, P.; Godzierz, M.; Kozioł, M.; Jała, J.; Szeluga, U.; Myalski, J. Structure and Mechanical Properties of High-Density Polyethylene Composites Reinforced with Glassy Carbon. Mater. 2021, 14, 4024.
  •  
  • 8. Khan, A. A.; Khan, U. A.; Hassan, R. Effects on Mechanical Properties of High-Density Polyethylene (HDPE) Reinforced with Walnut Shell Powder. In Recent Advances in Manufacturing, Automation, Design and Energy Technologies; Natrarajan, S. K., Prakash, R., Sankaranarnyanasamy, K., Eds.; Springer: Singapore, 2022; pp 323-330.
  •  
  • 9. Morimune‐Moriya, S.; Hashimoto, T.; Haga, R.; Tanahashi, H. Enhanced Mechanical and Thermal Properties of Nanodiamond Reinforced Low Density Polyethylene Nanocomposites. J. Appl. Polym. Sci. 2021, 138, 50929.
  •  
  • 10. Badgayan, N. D.; Sahu, S. K.; Samanta, S.; Sreekanth, P. S. Evaluation of Dynamic Mechanical and Thermal Behavior of HDPE Reinforced with MWCNT/h-BNNP: An Attempt to Find Possible Substitute for a Metallic Knee in Transfemoral Prosthesis. Int. J. Thermophys. 2019, 40, 93.
  •  
  • 11. Sahu, S. K.; Rama Sreekanth, P. S. Mechanical, Thermal and Rheological Properties of Thermoplastic Polymer Nanocomposite Reinforced with Nanodiamond, Carbon Nanotube and Graphite Nanoplatelets. Adv. Mater. Proc. Technol. 2022, DOI: 10.1080/2374068X.2022.2034309.
  •  
  • 12. Wang, K.; Zhang, K.; Jiang, Z.; Qiu, Z. Biobased Poly(1,3-propylene 2,5-furandicarboxylate)-Carbon Nanotubes Nano- composites with Enhanced Thermal, Mechanical Properties and Crystallization Behavior. J. Polym. Environ. 2022, 30, 555-561.
  •  
  • 13. Kapoor, S.; Goyal, M.; Jindal, P. Enhanced Thermal, Static, and Dynamic Mechanical Properties of Multi-walled Carbon Nano- tubes-reinforced Acrylonitrile Butadiene Styrene Nanocomposite. J. Therm. Compos. Mater. 2022, 35, 216-280.
  •  
  • 14. Ahmad, A.; Mansor, N.; Mahmood, H.; Iqbal, T.; Moniruzzaman, M. Effect of Ionic Liquids on Thermomechanical Properties of Polyetheretherketone‐multiwalled Carbon Nanotubes Nano- composites. J. Appl. Polym. Sci. 2022, 139, 51788.
  •  
  • 15. Manjunatha, C. M.; Srihari, S. A Brief Review on the Fatigue Behavior of Continuous Fiber Reinforced Thermosetting Epoxy Polymer Based Nanocomposites. Trans. Indian Nat. Acad. Eng. 2022, 7, 501-507.
  •  
  • 16. Namdev, A.; Telang, A.; Purohit, R. Synthesis and Mechanical Characterization of Epoxy Hybrid Composites Containing Graphene Nanoplatelets. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.2022; 236, 7984-7998.
  •  
  • 17. Bilisik, K.; Akter, M. Graphene Nanoplatelets/Epoxy Nano- composites: A Review on Functionalization, Characterization Techniques, Properties, and Applications. J. Reinf. Plast. Compos.2022, 41, 99-129.
  •  
  • 18. Yarahmadi, A.; Hashemian, M.; Toghraie, D.; Abedinzadeh, R.; Eftekhari, S. A. Investigation of Mechanical Properties of Epoxy-containing Detda and Degba and Graphene Oxide Nanosheet Using Molecular Dynamics Simulation. J. Mol. Liq. 2022, 347, 118392.
  •  
  • 19. Lodhi, R. S.; Kumar, P.; Achuthanunni, A.; Rahaman, M.; Das, P. Mechanical Properties of Polymer/Graphene Composites. In Polymer Nanocomposites Containing Graphene; Woodhead Publishing: Duxford, 2022; pp 75-105.
  •  
  • 20. Zhang, X.; Chen, J.; Liu, T. Physical Origin of Distinct Mechanical Properties of Polymer Tethered Graphene Nanosheets Reinforced Polymer Nanocomposites Revealed by Nonequilibrium Molecular Dynamics Simulations. Macromol. Theory Simul. 2022, 31, 2100044.
  •  
  • 21. Sahu, S. K.; Badgayan, N. D.; Samanta, S.; Sreekanth, P. S. R. March. Dynamic Mechanical Thermal Analysis of High Density Polyethylene Reinforced with Nanodiamond, Carbon Nanotube and Graphite Nanoplatelet. Mater. Sci. Forum 2018, 917, 27-31.
  •  
  • 22. Maitra, U.; Prasad, K. E.; Ramamurty, U.; Rao, C. N. R. Mechanical Properties of Nanodiamond-reinforced Polymer-matrix Composites. Solid State Commun. 2009, 149, 1693-1697.
  •  
  • 23. Sahu, S. K.; Badgayan, N. D.; Sreekanth, P. R. Understanding the Influence of Contact Pressure on the Wear Performance of HDPE/Multi-dimensional Carbon Filler Based Hybrid Polymer Nanocomposites. Wear 2019, 438-439, DOI: 10.1016/j.wear. 2019.01.125.
  •  
  • 24. Ornaghi Jr, H. L.; Monticeli, F. M.; Neves, R. M.; Zattera, A. J.; Amico, S. C. Experimental and Artificial Neural Network Approach for Prediction of Dynamic Mechanical Behavior of Sisal/Glass Hybrid Composites. Polym. Polym. Compos. 2021, 29, S1033-S1043.
  •  
  • 25. Adesina, O. T.; Jamiru, T.; Daniyan, I. A.; Sadiku, E. R.; Ogunbiyi, O. F.; Adesina, O. S.; Beneke, L. W. Mechanical Property Prediction of SPS Processed GNP/PLA Polymer Nanocomposite Using Artificial Neural Network. Cogent Eng. 2020, 7, 1720894.
  •  
  • 26. Lingaraju, D.; Ramji, K.; Rao, N. M. Characterization and Prediction of Some Engineering Properties of Polymer-Clay/Silica Hybrid Nanocomposites Through ANN and Regression Models. Procedia Eng. 2011, 10, 9-18.
  •  
  • 27. Zazoum, B.; Triki, E.; Bachri, A. Modeling of Mechanical Properties of Clay-reinforced Polymer Nanocomposites Using Deep Neural Network. Mater. 2020, 13, 4266.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(5): 614-620

    Published online Sep 25, 2022

  • 10.7317/pk.2022.46.5.614
  • Received on May 2, 2022
  • Revised on Jul 1, 2022
  • Accepted on Jul 8, 2022

Correspondence to

  • Santosh Kumar Sahu and P. S. Rama Sreekanth
  • School of Mechanical Engineering, VIT-AP University, Inavolu, Amaravati Andhra Pradesh, India 522237

  • E-mail: sksahumech@gmail.com, happyshrikanth@gmail.com