Article
  • Preparation of Porous TPU-PPy Flexible Composite Using 3D Printer and Its Application as Electrode Scaffold for Energy Storage Devices
  • Yeon Jae Kim, Samayanan Selvam, and Jin-Heong Yim

  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam 31080, Korea

  • 3D 프린트를 이용한 다공성 TPU-PPy 유연복합체의 제조 및 에너지 저장장치의 전극 스캐폴드 응용
  • 김연재 · Samayanan Selvam · 임진형

  • 공주대학교 공과대학 신소재공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Li, Q.; Horn, M.; Wang, Y.; MacLeod, J.; Motta, N.; Liu, J. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials. Materials 2019, 12, 703.
  •  
  • 2. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the Development of Advanced Li-ion Batteries: A Review. Energy Environ. Sci. 2011, 4, 3243-3262.
  •  
  • 3. Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845-854.
  •  
  • 4. González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on Supercapacitors: Technologies and Materials. Renew. Sustain Energy Rev. 2016, 58, 1189-1206.
  •  
  • 5. Lu, X.; Yu, M.; Wang, G.; Tong, Y.; Li, Y. Flexible Solid-state Supercapacitors: Design, Fabrication and Applications. Energy Environ. Sci. 2014, 7, 2160-2181.
  •  
  • 6. Duay, J.; Gillette, E.; Hu, J.; Lee, S. B. Controlled Electrochemical Deposition and Transformation of Hetero-nanoarchitectured Electrodes for Energy Storage. ACS Nano 2013,7, 1200-1214.
  •  
  • 7. Saravanakumar, B.; Purushothaman, K. K.; Muralidharan, G. High Performance Supercapacitor Based on Carbon Coated V2O5 Nanorods. J. Electroanal. Chem. 2015, 758, 111-116.
  •  
  • 8. Zhou, C.; Zhang, Y.; Li, Y.; Liu, J. Construction of High-capacitance 3D CoO@ Polypyrrole Nanowire Array Electrode for Aqueous Asymmetric Supercapacitor. Nano Lett. 2013, 13, 2078-2085.
  •  
  • 9. Lu, Q.; Zhou, Y. Synthesis of Mesoporous Polythiophene/MnO2 Nanocomposite and its Enhanced Pseudocapacitive Properties, J. Power Sources 2011, 196, 4088-4094.
  •  
  • 10. Wu, Q.; Xu, Y.; Yao, Z.; Liu, A.; Shi, G. Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 2010, 4, 1963-1970.
  •  
  • 11. Sharma, K.; Arora, A.; Tripathi, S. K. Review of Supercapacitors: Materials and Devices. J. Energy. Storage 2019, 21, 801-825.
  •  
  • 12. Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research Progress on Conducting Polymer Based Supercapacitor Electrode Materials. Nano. Energy. 2017, 36, 268-285.
  •  
  • 13. Liu, Z.; Tan, X.; Gao, X.; Song, L. Synthesis of Three-dimensionally Ordered Macroporous Manganese Dioxide-carbon Nanocomposites for Supercapacitors.J. Power. Sources. 2014, 267, 812-820.
  •  
  • 14. Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities. ACS Nano 2012, 6, 4020-4028.
  •  
  • 15. Liu, S.; Li, L. Ultrastretchable and Self-healing Double-network Hydrogel for 3D Printing and Strain Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429-26437.
  •  
  • 16. Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A Review of 3D Printing Technology for Medical Applications. Engineering 2018, 4, 729-742.
  •  
  • 17. Zhang, F.; Wei, M.; Viswanathan, V. V.; Swart, B.; Shao, Y.; Wu, G.; Zhou, C. 3D Printing Technologies for Electrochemical Energy Storage. Nano Energy 2017, 40, 418-431.
  •  
  • 18. Xue, J.; Gao, L.; Hu, X.; Cao, K.; Zhou, W.; Wang, W.; Lu, Y. Stereolithographic 3D Printing‑Based Hierarchically Cellular Lattices for High‑Performance Quasi‑Solid Supercapacitor. Nano-Micro Lett. 2019, 11, 46.
  •  
  • 19. Park, S. H.; Kaur, M.; Yun, D.; Kim, W. S. Hierarchically Designed Electron Paths in 3D Printed Energy Storage Devices. Langmuir 2018, 34, 10897-10904.
  •  
  • 20. Han, Y.-H.; Travas-Sejdic, J.; Wright, B.; Yim, J.-H. Simultaneous Vapor-Phase Polymerization of PEDOT and a Siloxane into Organic/Inorganic Hybrid Thin Films. Macromol. Chem. Phys., 2011, 212, 521-530.
  •  
  • 21. Kim, S. W.; Lee, S. W.; Kim, J.; Yim, J.-H. Cho, K. Y. Three-Dimensional, High-porosity Conducting Skeletal Structure from Biodegradable Microparticles with Vapor-phase Polymerized Conformal Surface Layer. Polymer 2016, 102, 127-135.
  •  
  • 22. Park, J. S.; Kim, B.; Lee, B.-T.; Choiand, J. S.; Yim, J.-H. Fabrication of an Electroconductive, Flexible, and Soft Poly(3,4-ethylenedioxythiophene)-thermoplastic Polyurethane Hybrid Scaffold by in situ Vapor Phase Polymerization. J. Mater. Chem. B 2018, 6, 4082-4088.
  •  
  • 23. Fernandez, F. D. M.; Khadka, R.; Yim, J.-H. Highly Porous, Soft, and Flexible Vapor-phase Polymerized Polypyrrole-styrene-ethylene-butylene-styrene Hybrid Scaffold as Ammonia and Strain Sensor. RSC Adv. 2020, 10, 22533-22541.
  •  
  • 24. Park, J. S.; Kang, H. J.; Lee, B.-T.; Chio, J. S.; Yim, J.-H. Mechanically and Electrically Enhanced Polyurethane-poly(3,4- ethylenedioxythiophene) Conductive Foams with Aligned Pore Structures Promote MC3T3-E1 Cell Growth and Proliferation. ACS Appl. Polym. Mater. 2020, 2, 1482-1490.
  •  
  • 25. Kim, Y. J.; Kang, H. J.; Moerk, C. T.; Lee, B.-T.; Choi, J. S.; Yim, J. H. Flexible, Biocompatible, and Electroconductive Polyurethane foam Composites Coated with Graphene Oxide for Ammonia Detection. Sens. Actuators, B 2021, 344, 130269.
  •  
  • 26. Kim, Y. J.; Kim, D.-H.; Choi, J. S.; Yim, J.-H. A Multi-functional Ammonia Gas and Strain Sensor with 3D-printed Thermoplastic Polyurethane-polypyrrole Composites. Polymer 2022, 240, 124490.
  •  
  • 27. Gray, R. L.; Lee, R. E. Scorch Inhibitors for Flexible Polyurethanes.Plastics Additives 1998, 537-575.
  •  
  • 28. Losaria, P. M.; Yim, J. H. A Highly Stretchable Large Strain Sensor Based on PEDOT-thermoplastic Polyurethane Hybrid Prepared via in situ Vapor Phase Polymerization. J. Ind. Eng. Chem. 2019, 74, 108-117.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(3): 389-396

    Published online May 25, 2022

  • 10.7317/pk.2022.46.3.389
  • Received on Feb 5, 2022
  • Revised on Mar 16, 2022
  • Accepted on Mar 31, 2022

Correspondence to

  • Jin-Heong Yim
  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheonandaero, Cheonan, Chungnam 31080, Korea

  • E-mail: jhyim@kongju.ac.kr