Article
  • Study on the Physical Properties of Rigid Polyurethane Foam via Phenolic Resin-Based Prepolymer
  • Hyo-Jeong Song and Sang-Bum Kim

  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeontong-gu, Suwon 16227, Korea

  • 페놀 수지 기반 프리폴리머를 이용한경질 폴리우레탄 폼의 물성 연구
  • 송효정 ·김상범

  • 경기대학교 화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Feldman, D. Polymeric Foam Materials for Insulation in Buildings. In Materials for Energy Efficiency and Thermal Comfort in Buildings; Hall M., Ed.; Woodhead Publishing Limited: Sawston, 2010; Vol. 1, pp 257-273.
  •  
  • 2. Gama, N. V.; Ferreira, A.; Timmons, A. B. Polyurethane Foams: Past, Present, and Future. Materials 2018, 11, 1841.
  •  
  • 3. Park, J. S.; Lee, H. P. The Characterization of Pyrolysis and Combustion of Polyurethanes. J. of Environmental & Thermal Engineering 2015,12, 57-73.
  •  
  • 4. Verdolotti, L.; Lavorgna, M.; Lamanna, R.; Maio, E. D.; Iannace, S. Polyurethane Silica Hybrid Foam by Sol-Gel Approach; Chemical and Functional Properties. Polymer 2015, 56, 20-28.
  •  
  • 5. Takeichi, T.; Guo, Y. Preparation and Properties of Poly(urethane-benzoxazine)s Based on Monofunctional Benzoxazine Monomer. Polymer Journal 2001,33, 437-443.
  •  
  • 6. Kim, H. J.; Park, W. B. KR101729205B1, 2017.
  •  
  • 7. Mougela, C.; Garnier, T.; Cassagnaua, P.; Sintes-Zydowicz, N. Phenolic Foams A Review of Mechanical Properties, Fire Resistance and New Trends in Phenol Substitution. Polymer 2019,164, 86-117.
  •  
  • 8. Kim, D. K.; Joe, J. E.; Kim, J. H.; Park, I. J.; Lee, S. B. Synthesis of Resol Type Phenol Resins and Their Reaction Properties. J. Korean Ind. Eng. Chem. 2005, 16, 288-291.
  •  
  • 9. Yang, C.; Zhuang, Z. H.; Yang, Z. G. Pulverized Polyurethane Foam Particles Reinforced Rigid Polyurethane Foam and Phenolic Foam. J. Appl. Polym. Sci. 2014, 131,39734.
  •  
  • 10. Yu, M. J.; Kwon, T. S.; Bae, Y. H.; Vu, M. C.; Lee, B. C.; Kim, S. R. Effects of Carbon-based Nanofillers on the Structure and Property of Phenolic Foam. Polym. Korea 2018, 42, 133-139.
  •  
  • 11. Shen, H.; Nutt, S. Mechanical Characterization of Short fiber Reinforced Phenolic Foam. Composites: Part A 2003, 34, 899-906.
  •  
  • 12. Rangari, V. K.; Hassan, T. A.; Zhou, Y.; Mahfuz, H.; Jeelani, S.; Prorok, B. C. Cloisite Clay-Infused Phenolic Foam Nanocomposites. J. Appl. Polym. Sci. 2007, 103, 308-314.
  •  
  • 13. Hu, X. M.; Wang, D. M.; Cheng, W. M.; Zhou, G. Effect of Polyethylene Glycol on the Mechanical Property, Microstructure, Thermal Stability, and Flame Resistance of Phenol-Urea-Formaldehyde Foams. J. Mater. Sci. 2014,49, 1556-1565.
  •  
  • 14. Liang, B.; Li, X.; Hu, L.; Bo, C.; Zhou, J.; Zhou, Y. Foaming Resol Resin Modified with Polyhydroxylated Cardanol and Its Application to Phenolic Foams. Industrial Crops and Products 2016,80, 194-196.
  •  
  • 15. Megiatto Jr, J. D.; Ramires, E. C.; Frollini, E. Phenolic Matrices and Sisal fibers Modified with Hydroxy Terminated Polybutadiene Rubber Impact Strength, Water Absorption, and Morphological Aspects of Thermosets and Composites. Industrial Crops and Products 2010,31, 178-184.
  •  
  • 16. Kaynak, C.; Cagatay, O. Rubber Toughening of Phenolic Resin by Using Nitrile Rubber and Amino Silane. Polymer Testing 2006, 25, 296-305.
  •  
  • 17. Xu, W.; Chen, R.; Xu, J.; Wang, G.; Cheng, C.; Yan, H. Preparation and Mechanism of Polyurethane Prepolymer and Boric Acid Co‐Modified Phenolic Foam Composite Mechanicalproperties, Thermal Stability, and Flame Retardant Propertie. Polym. Adv. Technol. 2019, 30, 1738-1750.
  •  
  • 18. Yang, H.; Wang, X.; Yu, B.; Yuan, H.; Song, L.; Hu, Y.; Yuen, R. K. K.; Yeoh, G. H. A Novel Polyurethane Prepolymer as Toughening Agent Preparation, Characterization, and Its Influence on Mechanical and Flame Retardant Properties of Phenolic Foam. J. Appl. Polym. Sci. 2013, 128, 2720-2728.
  •  
  • 19. Ding, H.; Wang, J.; Liu, J.; Xu, Y.; Chen, R.; Wang, C.; Chu, F. Preparation and Properties of a Novel Flame Retardant Polyurethane Quasi-Prepolymer for Toughening Phenolic Foam. J. Appl. Polym. Sci. 2015,132,42424.
  •  
  • 20. Chen, G.; Liu, J.; Zhang, W.; Han, Y.; Zhang, D.; Li, J.; Zhang, S. Lignin-Based Phenolic Foam Reinforced by Poplar Fiber and Isocyanate-Terminated Polyurethane Prepolymer. Polymer 2021, 13, 1068.
  •  
  • 21. Wong, C. S.; Badri, K. H. Chemical Analyses of Palm Kernel Oil-Based Polyurethane Prepolymer. Mater. Sci. Appl. 2012, 3, 78-86.
  •  
  • 22. Ge, T.; Hu, X.; Tang, K.; Wang, D. The Preparation and Properties of Terephthalyl-Alcohol-Modified Phenolic Foam with High Heat Aging Resistance. Polymer 2019, 11, 1267.
  •  
  • 23. Yangfei, C.; Zhiqin, C.; Shaoyi, X.; Hongboa, L. A Novel Thermal Degradation Mechanism of Phenol-Formaldehyde Type Resins. Thermochimica Acta 2008, 476, 39-43.
  •  
  • 24. Shin, H. K.; Lee, S. H. Effect of Catalyst Type and NCO Index on the Synthesis and Thermal Properties of Poly(urethane-iso- cyanurate) Foams. Elastomers and Composites 2018,53, 86-94.
  •  
  • 25. Levchik, S. V.; Weil, E. D. Thermal Decomposition, Combustion and Fire-Retardancy of Polyurethanes-A Review of the Recent Literature. Polym. Int. 2004,53, 1585-1610.
  •  
  • 26. Kordomenos, P. I.; Kresta, J. E.; Frisch, K. C. Thermal Stability of Isocyanate-Based Polymers. 2. Kinetics of the Thermal Dissociation of Model Urethane, Oxazolidone, and Isocyanurate Block Copolymers. Macromolecules 1987, 20, 2077-2083.
  •  
  • 27. Park, Y. G. A Study on Combustion Gases Toxicity Evaluation of Polymeric Material. Fire Sci. Eng. 2001, 15, 7-13.
  •  
  • 28. Lenz, J.; Pospiech, D.; Paven, M.; Albach, R. W.; Voit, B. Influence of the Catalyst Concentration on the Chemical Structure, the Physical Properties and the Fire Behavior of Rigid Polyisocyanurate Foams. Polym. Degrad. Stab. 2010,177, 109168.
  •  
  • 29. Modesti, M.; Lorenzetti, A. An Experimental Method for Evaluating Isocyanate Conversion and Trimer Formation in Polyisocyanate-Polyurethane Foams. Eur. Polym. J. 2001, 27, 949-954.
  •  
  • 30. Dick, C.; Rosado, E. D.; Eling, B.; Liggat, J. J.; Lindsay, C. I.; Martin, S.C.; Mohammed, M. H.; Seeley, G.; Snape, C. E. The Flammability of Urethane-Modified Polyisocyanurates and Its Relationship to Thermal Degradation Chemistry. Polymer 2001, 42, 913-923.
  •  
  • 31. Lia, J.; Zhanga, A.; Zhanga, S.; Gaoa, Q.; Zhanga, W.; Lia, J. Larch Tannin-Based Rigid Phenolic Foam with High Compressive Strength, Lowfriability, and Low Thermal Conductivity Reinforced by Cork Powder. Composites Part B 2019,156, 368-377.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2020 Impact Factor : 0.493
  • Indexed in SCIE

This Article

  • 2022; 46(2): 266-274

    Published online Mar 25, 2022

  • 10.7317/pk.2022.46.2.266
  • Received on Dec 13, 2021
  • Revised on Jan 29, 2022
  • Accepted on Jan 26, 2022

Correspondence to

  • Sang-Bum Kim
  • Department of Chemical Engineering, Kyonggi University, 154-42, Gwanggyosan-ro, Yeontong-gu, Suwon 16227, Korea

  • E-mail: ksb@kyonggi.ac.kr