Article
  • Thermal Properties of Poly(lactic acid) Film Containing Antibacterial Quercetin
  • Yejin Park and Jonghwi Lee

  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • 항균성 Quercetin 함유 Poly(lactic acid) 필름의 열적 특성
  • 박예진 · 이종휘

  • 중앙대학교 공과대학 화학신소재공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. Synthesis of Poly(lactic acid): A Review. J. Macromol. Sci., Part C: Polym. Rev. 2005, 45, 325-349.
  •  
  • 2. Zeng, J.-B.; Li, K.-A.; Du, A.-K. Compatibilization Strategies in Poly(lactic acid)-based Blends. RSC Adv. 2015, 5, 32546-32565.
  •  
  • 3. Schliecker, G.; Schmidt, C.; Fuchs, S.; Kissel, T. Characterization of a Homologous Series of D,L-Lactic Acid Oligomers; A Mechanistic Study on the Degradation Kinetics In vitro. Biomater. 2003, 24, 3835-3844.
  •  
  • 4. Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J. H.; Abu-Omar, M.; Scott, S. L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustainable Chem. Eng. 2020, 8, 3494-3511.
  •  
  • 5. Tosin, M.; Weber, M.; Siotto, M.; Lott, C.; Degli Innocenti, F., Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions. Front. Microbiol. 2012, 3, 225.
  •  
  • 6. Lambert, S.; Wagner, M. Characterisation of Nanoplastics During the Degradation of Polystyrene. Chemosphere 2016, 145, 265-268.
  •  
  • 7. Urayama, H.; Kanamori, T.; Kimura, Y. Microstructure and Thermomechanical Properties of Glassy Polylactides with Different Optical Purity of the Lactate Units. Macromol. Mater. Eng. 2001, 286, 705-713.
  •  
  • 8. Merja It€avaara, S. K. Johan-Fredrik Selin, Biodegradation of Polylactide in Aerobic and Anaerobic Thermophilic Conditions. Chemosphere 2002, 46, 879-885.
  •  
  • 9. Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) Modifications. Prog. Polym. Sci. 2010, 35, 338-356.
  •  
  • 10. Farah, S.; Anderson, D. G.; Langer, R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications-A Comprehensive Review. Adv. Drug. Deliv. Rev. 2016, 107, 367-392.
  •  
  • 11. Yang, Y.; Zhang, L.; Xiong, Z.; Tang, Z.; Zhang, R.; Zhu, J. Research Progress in the Heat Resistance, Toughening and Filling Modification of PLA. Sci. China: Chem. 2016, 59, 1355-1368.
  •  
  • 12. Anderson, K.; Schreck, K.; Hillmyer, M. Toughening Polylactide. Polym. Rev. 2008, 48, 85-108.
  •  
  • 13. Androsch, R.; Di Lorenzo, M. L. Crystal Nucleation in Glassy Poly(L-lactic acid). Macromolecules 2013, 46, 6048-6056.
  •  
  • 14. Kfoury, G.; Raquez, J. M.; Hassouna, F.; Odent, J.; Toniazzo, V.; Ruch, D.; Dubois, P. Recent Advances in High Performance Poly(lactide): from “Green” Plasticization to Super-tough Materials via (Reactive) Compounding. Front. Chem. 2013, 1, 32.
  •  
  • 15. Krishnan, S.; Pandey, P.; Mohanty, S.; Nayak, S. K. Toughening of Polylactic Acid: An Overview of Research Progress. Polym.-Plast. Technol. Eng. 2015, 55, 1623-1652.
  •  
  • 16. Liu, H.; Zhang, J. Research Progress in Toughening Modification of Poly(lactic acid). J. Polym. Sci., Part B: Polym. Phys. 2011, 49, 1051-1083.
  •  
  • 17. Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly(lactic acid) Crystallization. Prog. Polym. Sci. 2012, 37, 1657-1677.
  •  
  • 18. Frone, A. N.; Berlioz, S.; Chailan, J. F.; Panaitescu, D. M. Morphology and Thermal Properties of PLA-Cellulose Nanofibers Composites. Carbohydr. Polym. 2013, 91, 377-384.
  •  
  • 19. Jamshidian, M.; Tehrany, E. A.; Imran, M.; Akhtar, M. J.; Cleymand, F.; Desobry, S. Structural, Mechanical and Barrier Properties of Active PLA-Antioxidant Films. J. Food Eng. 2012, 110, 380-389.
  •  
  • 20. Pei, A.; Zhou, Q.; Berglund, L. A. Functionalized Cellulose Nanocrystals as Biobased Nucleation Agents in Poly(L-lactide) (PLLA)-Crystallization and Mechanical Property Effects. Compos. Sci. Technol. 2010, 70, 815-821.
  •  
  • 21. Faller, A. L. K.; Fialho, E. Polyphenol Content and Antioxidant Capacity in Organic and Conventional Plant Foods. J. Food Compos. Anal. 2010, 23, 561-568.
  •  
  • 22. Kost, B.; Svyntkivska, M.; Brzezinski, M.; Makowski, T.; Piorkowska, E.; Rajkowska, K.; Kunicka-Styczynska, A.; Biela, T. PLA/b-CD-Based Fibres Loaded with Quercetin as Potential Antibacterial Dressing Materials. Colloids Surf., B 2020, 190, 110949.
  •  
  • 23. Huang, Y.-F.; Zhang, Z.-C.; Li, Y.; Xu, J.-Z.; Xu, L.; Yan, Z.; Zhong, G.-J.; Li, Z.-M. The Role of Melt Memory and Template Effect in Complete Stereocomplex Crystallization and Phase Morphology of Polylactides. Cryst. Growth Des. 2018, 18, 1613-1621.
  •  
  • 24. Li, H.; Nie, W.; Deng, C.; Chen, X.; Ji, X. Crystalline Morphology of Poly(L-lactic acid) Thin Films. Eur. Polym. J. 2009, 45, 123-130.
  •  
  • 25. Nagarajan, V.; Mohanty, A. K.; Misra, M. Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chem. Eng. 2016, 4, 2899-2916.
  •  
  • 26. Latos-Brozio, M.; Masek, A. The Application of (+)-Catechin and Polydatin as Functional Additives for Biodegradable Polyesters. Int. J. Mol. Sci. 2020, 21, 414.
  •  
  • 27. Pandey, S. K.; Patel, D. K.; Thakur, R.; Mishra, D. P.; Maiti, P.; Haldar, C. Anti-Cancer Evaluation of Quercetin Embedded PLA Nanoparticles Synthesized by Emulsified Nanoprecipitation. Int. J. Biol. Macromol. 2015, 75, 521-529.
  •  
  • 28. Lorenzo, A. T.; Arnal, M. L.; Albuerne, J.; Müller, A. J. DSC Isothermal Polymer Crystallization Kinetics Measurements and the Use of the Avrami Equation to Fit the Data: Guidelines to Avoid Common Problems. Polym. Test. 2007, 26, 222-231.
  •  
  • 29. Zhou, W. Y.; Duan, B.; Wang, M.; Cheung, W. L. Crystallization Kinetics of Poly(L-lactide)/Carbonated Hydroxyapatite Nano- composite Microspheres. J. Appl. Polym. Sci. 2009, 113, 4100-4115.
  •  
  • 30. Yu, L.; Liu, H.; Dean, K.; Chen, L. Cold Crystallization and Postmelting Crystallization of PLA Plasticized by Compressed Carbon Dioxide. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 2630-2636.
  •  
  • 31. Duan, J.; Reddy, K. O.; Ashok, B.; Cai, J.; Zhang, L.; Rajulu, A. V. Effects of Spent Tea Leaf Powder on the Properties and Functions of Cellulose Green Composite Films. J. Environ. Chem. Eng. 2016, 4, 440-448.
  •  
  • 32. Thiagamani, S. M. K.; Nagarajan, R.; Jawaid, M.; Anumakonda, V.; Siengchin, S. Utilization of Chemically Treated Municipal Solid Waste (Spent Coffee Bean Powder) as Reinforcement in Cellulose Matrix for Packaging Applications. Waste Manag. 2017, 69, 445-454.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2020 Impact Factor : 0.493
  • Indexed in SCIE

This Article

  • 2022; 46(2): 223-228

    Published online Mar 25, 2022

  • 10.7317/pk.2022.46.2.223
  • Received on Nov 16, 2021
  • Revised on Dec 21, 2021
  • Accepted on Jan 5, 2022

Correspondence to

  • Jonghwi Lee
  • Department of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea

  • E-mail: jong@cau.ac.kr