Article
  • Effects of ABS Resin Type and Carbon Fiber Content on Various Characteristics of Carbon Fiber/ABS Composites Fabricated Using Extruded and LFT Pellets
  • Heesook Lee and Donghwan Cho

  • Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea

  • 압출 및 LFT 펠렛을 사용하여 제조한 탄소섬유/ABS 복합재료의 여러 가지 특성에 미치는 ABS수지 종류와 탄소섬유 함량의 영향
  • 이희숙 · 조동환

  • 금오공과대학교 고분자공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Soutis, C. Carbon Fiber Reinforced Plastics in Aircraft Construction. Mater. Sci. Eng. A 2005, 412, 171-176.
  •  
  • 2. Jeong, N.; Cho, D. Effect of Prepreg Angle-Ply on the Dynamic, Mechanical, Tensile, Flexural, and Impact Properties of Non-Crimp Carbon Fiber Fabric/Epoxy Composites. Polym. Korea 2020, 44, 61-69.
  •  
  • 3. Obande, W.; Ó Brádaigh, C. M.; Ray, D. Continuous Fibre-Reinforced Thermoplastic Acrylic-Matrix Composites Prepared by Liquid Resin Infusion - A Review. Composites Part B 2021, 215, 108771.
  •  
  • 4. Jung, S.; Cho, D. Effect of Fiber Feeding Route upon Extrusion Process on the Electromagnetic, Mechanical, and Thermal Properties of Nickel-Coated Carbon Fiber/Polypropylene Composites. Composites Part B 2020, 187, 107861.
  •  
  • 5. Adam, H. Carbon Fibre in Automotive Applications. Mater. Des. 1997, 18, 349-355.
  •  
  • 6. Godara,S. S.; Nagar, S. N. Analysis of Frontal Bumper Beam of Automobile Vehicle by Using Carbon Fiber Composite Material. Mater. Today: Proceed. 2020, 26, 2601-2607.
  •  
  • 7. Ahn, S.; Yan, Y.; Jeon, H.-Y. Effect of Maleic Anhydride-grafted Polypropylene on Recycled Carbon Fiber Reinforced Polypropylene. Polym. Korea 2020, 44, 109-115.
  •  
  • 8. Tseng, H.-C.; Chang, R.-Y.; Hsu, C.-H. Numerical Predictions of Fiber Orientation and Mechanical Properties for Injection-Molded Long-Glass-Fiber Thermoplastic Composites. Compos. Sci. Technol. 2017, 150, 181-186.
  •  
  • 9. Zhang, Q.; Zhang, J.; Wu, L. Impact and Energy Absorption of Long Fiber-Reinforced Thermoplastic Based on Two-Phase Modeling and Experiments. Int’l J. Impact Eng. 2018, 122, 374-383.
  •  
  • 10. Thattaiparthasarathy, K. B.; Pillay, S.; Vaidya, H. U. K. Process Simulation, Design and Manufacturing of a Long Fiber Thermoplastic Composite for Mass Transit Application. Composites Part A 2008, 39, 1512-1521.
  •  
  • 11. Luo, H.; Xiong, G.; Maa, C.; Li, D.; Wana, Y. Preparation and Performance of Long Carbon Fiber Reinforced Polyamide 6 Composites Injection-Molded from Core/Shell Structured Pellets. Mater. Des. 2014, 64, 294-300.
  •  
  • 12. Henning, F.; Ernst, H.; Brüssel, R. LFTs for Automotive Applications, Reinf. Plast. 2005, 49, 24-33.
  •  
  • 13. Bondy, M.; Pinter, P.; Altenhof, W. Experimental Characterization and Modelling of the Elastic Properties of Direct Compounded Compression Molded Carbon Fibre/Polyamide 6 Long Fibre Thermoplastic. Mater. Des. 2017, 122, 184-196.
  •  
  • 14. Hwang, D.; Cho, D. Fiber Aspect Ratio Effect on Mechanical and Thermal Properties of Carbon Fiber/ABS Composites via Extrusion and Long Fiber Thermoplastic Processes. J. Indus. Eng. Chem. 2019, 80, 335-344.
  •  
  • 15. Kumar, K. S.; Ghosh, A. K.; Bhatnagar, N. Mechanical Properties of Injection Molded Long Fiber Polypropylene Composites: Part 1: Tensile and Flexural Properties. Polym. Compos. 2007, 28, 259-266.
  •  
  • 16. Goel, A.; Chawla, K. K.; Vaidya, U. K.; Chawla, N.; Koopman, M. Characterization of Fatigue Behavior of Long Fiber Reinforced Thermoplastic (LFT) Composites. Mater. Charact. 2009, 60, 537-544.
  •  
  • 17. Lee, H.; Cho, D. Effects of A, B, and S Components on the Fiber Length Distribution, Mechanical, and Impact Properties of Carbon Fiber/ABS Composites Produced by Different Processing Methods. J. Appl. Polym. Sci. 2021, 138, 50674.
  •  
  • 18. Yilmazer, U.; Cansever, M. Effects of Processing Conditions on the Fiber Length Distribution and Mechanical Properties of Glass Fiber Reinforced Nylon-6, Polym. Compos. 2002, 23, 61-71.
  •  
  • 19. Melro, A. R.; Camanho, P. P.; Pinho, S. T. Generation of Random Distribution of Fibres in Long-Fibre Reinforced Composites. Compos. Sci. Technol. 2012, 68, 2092-2102.
  •  
  • 20. Schemme, M. LFT –Development Status and Perspectives. Plast. Add. Compound. 2008, 10, 38-43.
  •  
  • 21. Holmes, M. Increased Market Role for Long Fiber Thermoplastics. Reinf. Plast. 2019, 63, 262-266.
  •  
  • 22. Moore, J. D. Acrylonitrile-Butadiene-Styrene (ABS) - A Review. Composites 1973, 4, 118-130.
  •  
  • 23. Threepopnatkul, P.; Teppinta1, W.; Sombatsompop, N. Effect of Co-monomer Ratio in ABS and Wood Content on Processing and Properties in Wood/ABS Composites. Fiber. Polym. 2011, 12, 1007-1013.
  •  
  • 24. Hwang, D.; Lee, S. G.; Cho, D. Dual-Sizing Effects of Carbon Fiber on the Thermal, Mechanical, and Impact Properties of Carbon Fiber/ABS Composites. Polymers 2021, 13, 2298.
  •  
  • 25. Li, J.; Zhang, Y. F. The Tensile Properties of Short Carbon Fiber Reinforced ABS and ABS/PA6 Composites. J. Reinf. Plast. Compos. 2009, 29, 1727-1733.
  •  
  • 26. Lopes, B. J.; d'Almeida, J. R. M. Initial Development and Characterization of Carbon Fiber Reinforced ABS for Future Additive Manufacturing Applications. Mater. Today: Proceed. 2019, 8, 719-730.
  •  
  • 27. Yu, N.; Sun, X.; Wang, Z.; Zhang, D.; Li, J. Effects of Auxiliary Heat on Warpage and Mechanical Properties in Carbon Fiber/ABS Composite Manufactured by Fused Deposition Modeling. Mater. Des. 2020, 195, 108978.
  •  
  • 28. Thomason, J. L.; Vlug, M. A. Influence of Fiber Length and Concentration on the Properties of Glass Fiber-Reinforced Polypropylene: Part 1-Tensile and Flexural Modulus. Compos. Part A 1996, 27, 477-484.
  •  
  • 29. Thomason, J. L.; Vlug, M. A. Influence of Fiber Length and Concentration on the Properties of Glass Fiber-Reinforced Polypropylene: Part 4-Impact Properties. Compos. Part A 1997, 28, 227-288.
  •  
  • 30. Kumar, K. S.; Ghosh, A. K.; Bhatnagar, N. Mechanical Properties of Injection Molded Long Fiber Polypropylene Composites, Part 1: Tensile and Flexural Properties. Polym. Compos. 2007, 28, 259-266.
  •  
  • 31. Mathijsen, D. Long Fiber Thermoplastics are a Key Technology in Expanding Existing Markets for Composites. Reinf. Plast. 2019, 63, 267-272.
  •  
  • 32. Lin, M.-C.; Lin, J.-H.; Bao, L. Applying TPU Blends and Composite Carbon Fibers to Flexible Electromagnetic-Shielding Fabrics: Long-Fiber-Reinforced Thermoplastics Technique. Composites Part A 2020, 138, 106022.
  •  
  • 33. Lee, S. M.; Han, S. O.; Cho, D.; Park, W. H.; Lee, S. G. Influence of Chopped Fibre Length on the Mechanical and Thermal Properties of Silk Fibre-Reinforced PBS Biocomposites. Polym. Polym. Compos. 2005, 13, 479-488.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2020 Impact Factor : 0.493
  • Indexed in SCIE

This Article

  • 2022; 46(2): 186-197

    Published online Mar 25, 2022

  • 10.7317/pk.2022.46.2.186
  • Received on Nov 3, 2021
  • Revised on Nov 29, 2021
  • Accepted on Nov 29, 2021

Correspondence to

  • Donghwan Cho
  • Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea

  • E-mail: dcho@kumoh.ac.kr