Article
  • Preparation of the Electro-Mechanically Durable rGO-SEBS Composite Elastomer and Its Application as a Strain Sensor
  • Dae-Dong Park and Jin-Heong Yim

  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheoandaero, Cheonan, Chungnam 31080, Korea

  • 전기-기계적으로 내구성이 있는 rGO-SEBS 복합 탄성체의 제조와 스트레인 센서로의 응용
  • 박대동 · 임진형

  • 공주대학교 공과대학 신소재공학부

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Hong, S. K.; Yang, S.; Cho, S. J.; Jeon, H.; Lim, G. Development of a Waterproof Crack-Based Stretchable Strain Sensor Based on PDMS Shielding. Sensors 2018, 18, 1171.
  •  
  • 2. Xian, H. J.; Cao, C. R.; Shi, J. A.; Zhu, X. S.; Hu, Y. C.; Huang, Y. F.; Meng, S.; Gu, L.; Liu, Y. H.; Bai, H. Y.; Wang, W. H. Flexible Strain Sensors with High Performance Based on Metallic Glass Thin Film. Appl. Phys. Lett. 2017, 111, 121906.
  •  
  • 3. Liao, X.; Yan, X.; Lin, P.; Lu, S.; Tian, Y.; Zhang, Y. Enhanced Performance of ZnO Piezotronic Pressure Sensor Through Electron-Tuneeling Modulation of MgO Nanolayer. ACS Appl. Mater. Inter. 2015, 7, 1602-1607.
  •  
  • 4. Jian, M.; Wang, C.; Wang, Q.; Wang, H.; Xia, K.; Yin, Z.; Zhang, M.; Liang, X.; Zhang, Y. Advanced Carbon Materials for Flexible and Wearable Sensor. Sci. Chin. Mater. 2017, 60, 1026-1062.
  •  
  • 5. Ponnamma, D.; Guo, Q.; Krupa, I.; Al-Maadeed, M. A. S. A.; Varughese, K. T.; Thomas, S.; Sadasivuni, K. K. Graphene and Graphitic Derivative Filled Polymer Composites as Potential Sensors. Phys. Chem. Chem. Phys. 2015, 17, 3954-3981.
  •  
  • 6. Chabot, V.; Higgins, D.; Yu, A.; Xiao, X.; Chen, Z.; Zhang, J. A Review of Graphene and Graphene Oxide Sponge: Material Synthesis and Applications to Energy and the Environment. Ener. Envir. Sci. 2014, 7, 1564-1596.
  •  
  • 7. Naveen, M. H.; Gurudatt, N. G.; Shim, Y. B. Applications of Conducting Polymer Composites to Electrochemical Sensor: A Review. Appl. Mater. Today 2017,9, 419-433.
  •  
  • 8. Cochrane, C.; Koncar, V.; Lewandowski, M.; Dufour, C. Design and Development of a Flexible Strain Sensor for Textile Structures Based on a Conductive Polymer Composite. Sensors 2007, 7, 473-492.
  •  
  • 9. Mattmann, C.; Clemens, F.; Tröster, G. Sensor for Measuring Strain in Textile. Sensors 2008, 8, 3719-3732.
  •  
  • 10. Amjadi, M.; Yoon, Y. J.; Park, I. Ultra-Stretchable and Skin-Mountable Strain Sensors Using Carbon Nanotubes-Ecoflex Nanocomposites. Nanotechnology 2015, 26, 375501.
  •  
  • 11. Yamada, T.; Hayamizu, Y.; Yamamoto, Y.; Yomogida, Y.; Izadi-Najafabadi, A.; Futaba, D. N.; Hata, K. A Stretchable Carbon Nanotube Strain Sensor for Human-Motion Detection. Nat. Nanotechnol. 2011, 6, 296-301.
  •  
  • 12. Jang, H.; Park, Y. J.; Chen, X.; Das, T.; Kim, M. S.; Ahn, J. H. Graphene-BasedFlexible and Stretchable Electronics. Advan. Mater. 2016, 28, 4184-4202.
  •  
  • 13. Choi, Y. I.; Hwang, B. U.; Meeseepong, M.; Hanif, A.; Ramasundaram, S.; Trung, T. Q.; Lee, N. E. Stretchable and Transparent Nanofiber-Networked Electrodes Based on Nanocomposites of Polyurethane/Reduced Graphene Oxide/Silver Nanoparticles with High Dispersion and Fused Junctions. Nanoscale 2019, 11, 3916-3924.
  •  
  • 14. Tang, Y.; Zhao, Z.; Hu, H.; Liu, Y.; Wang, X.; Zhou, S.; Qiu, J. Highly Stretchable and Ultrasensitive Strain Sensor Based on Reduced Graphene Oxide Microtubes-Elastomer Composite. ACS Appl. Mater. Inter. 2015, 7, 27432-27439.
  •  
  • 15. Song, J.; Tan, Y.; Chu, Z.; Xiao, M.; Li, G.; Jiang, Z.; Wang, J.; Hu, T. Hierarchical Reduced Graphene Oxide Ridges for Stretchable, Wearable, and Washable Strain Sensors. ACS Appl. Mater. Inter. 2019, 11, 1283-1293.
  •  
  • 16. Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite. ACS Nano 2014, 8, 5154-5163.
  •  
  • 17. Yao, S.; Zhu, Y. Wearable Multifunctional Sensors Using Printed Stretchable Conductor Made of Silver Nanowires. Nanoscale 2014, 6, 2345-2352.
  •  
  • 18. Losaria, P. M.; Yim, J. H. A Highly Stretchable Large Strain Sensor Based on PEDOT-Thermoplastic Polyurethane Hybrid Prepared via in situ Vapor Phase Polymerization. J. Ind. Eng. Chem. 2019, 74, 108-117.
  •  
  • 19. Fu, Y. F.; Li, Y. Q.; Liu, Y. F.; Huang, P.; Hu, N.; Fu, S. Y. High-Performance Structural Flexible Strain Sensors Based on Graphene-Coated Glass Fabric/Silicon Composite. ACS Appl. Mater. Inter. 2018, 10, 35503-35509.
  •  
  • 20. Liu, Q.; Chen, J.; Li, Y.; Shi, G. High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-range Detection of Human Motions. ACS Nano 2016, 10, 7901-7906.
  •  
  • 21. Wang, Y.; Hao, J.; Huang, Z.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Flexible Electrically Resistive-Type Strain Sensors Based on Reduced Graphene Oxide-Decorated Electrospun Polymer Fibrous Mats for Human Motion Monitoring. Carbon 2018, 126, 360-371.
  •  
  • 22. Xu, M.; Qi, J.; Li, F.; Zhang, Y. Highly Stretchable Strain Sensors with Reduced Graphene Oxide Sensing Liquids for Wearable Electronics. Nanoscale 2018, 10, 5264-5271.
  •  
  • 23. Park, J. J.; Hyun, W. J.; Mun, S. C.; Park, Y. T.; Park, O. O. Highly Stretchable and Wearable Graphene Strain Sensors with Controllable Sensitivity for Human Motion Monitoring. ACS Appl. Mater. Inter. 2015, 7, 6317-6324.
  •  
  • 24. Tian, H.; Shu, Y.; Cui, Y. L.; Mi, W. T.; Yang, Y.; Xie, D.; Ren, T. L. Scalable Fabrication of High-Performance and Flexible Graphene Strain Sensors. Nanoscale 2014, 6, 699-705.
  •  
  • 25. Liang, A.; Jiang, X.; Hong, X.; Jiang, Y.; Shao, Z.; Zhu, D. Recent Developments Concernging the Dispersion Methods and Mechanisms of Graphene. Coatings 2018, 8, 33.
  •  
  • 26. Huang, K.; Yu, H.; Xie, M.; Liu, S.; Wu, F. Effects of Poly(ethylene glycol)-Grafted Graphene on the Electrical Properties of Poly(lactic acid) Nanocomposites. RSC Adv. 2019, 9, 10599-10605.
  •  
  • 27. Qi, X.; Yao, X.; Deng, S.; Zhou, T.; Fu, Q. Water-Induced Shape Memory Effect of Graphene Oxide Reinforced Polyvinyl Alcohol Nanocomposites. J. Mater. Chem. A 2014, 2, 2240-2249.
  •  
  • 28. Gonalves, G.; Marques, P. A. A. P.; Barros-Timmons, A.; Bdkin, I.; Singh, M. K.; Emami, N.; Grácio, J. Graphene Oxide Modified with PMMA via ATRP as a Reinforcement Filler. J. Mater. Chem. 2010, 20, 9927-9934.
  •  
  • 29. Wang, Y.; Chen, X.; Zhu, W.; Huang, X.; Tang, X. Z.; Yang, J. A Comparison of Thermoplatic Polyurethane Incorporated with Graphene Oxide and Thermally Reduced Graphene Oxide: Reduction is Not Always Necessary. J. Appl. Polym. Sci. 2019, 136, 47745.
  •  
  • 30. Holden, G.; Hansen, D. R. Thermoplastic Elastomers, 3rd ed.; Carl Hanser Verlag: München, 2004; pp 45-67.
  •  
  • 31. Ouhadi, T.; Abdou-Sabet, A.; Wussow, H.-G.; Ryan, L. M.; Plummer, L.; Baumann, F. E.; Lohmar, J.; Vermeire, H. F.; Malet, L. G. Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2000.
  •  
  • 32. Balsamo, V.; Lorenzo, A. T.; Müller, A. J.; Corona-Galván, S.; Trillo, L. M. F.; Quiteria, V. R. S. Structure, Properties and Applications of ABA and ABC Triblock copolymers with Hydrogenated Polybutadiene Blocks. In Block Copolymers in Nanoscience; Lazarri, M., Liu, G., Lecommandoux, S., Eds.; Wiley-VCH Verlag & GmbH Co. KGaA: Weinheim, 2006; pp 367-389.
  •  
  • 33. Lecommandoux, S.; Lazzari, M.; Liu, G. Chapter 1, An Introduction to Block Copolymer Applications: State-of-the-Art and Future Developments. In Block Copolymers in Nanoscience; Lazarri, M., Lecommandoux, S., Liu, G., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, 2006; pp 1-7.
  •  
  • 34. He, M.; Zhang, R.; Zhang, K.; Liu, Y.; Su, Y.; Jiang, Z. Reduced Graphene Oxide Aerogel Membranes Fabricated Through Hydrogen Bond Mediation for Highly Efficient Oil/Water Separation. J. Mater. Chem. A 2019, 7, 11468-11477.
  •  
  • 35. Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of Oxygen Functional Groups in Reduced Graphene Oxide for Lubrication. Sci. Rep. 2017, 7, 45030.
  •  
  • 36. Fu, Y.; Li, Y.; Liu, Y.; Huang, P.; Hu, N.; Fu, S. High-Performance Structural Flexible Strain Sensors Based on Graphene-Coated Glass Fabric/Silicone Composite. ACS Appl. Mater. Interfaces 2018, 10, 35503-35509.
  •  
  • 37. O’ Connor, T. F.; Fach, M. E.; Miller, R.; Root, S. E.; Mercier, P. P.; Lipomi, D. J. The Language of Glove: Wireless Gesture Decoder with Low-Power and Stretchable Hybrid Electronics. PLoS ONE 2017, 12, e0179766.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(1): 81-87

    Published online Jan 25, 2022

  • 10.7317/pk.2022.46.1.81
  • Received on Sep 10, 2021
  • Revised on Nov 2, 2021
  • Accepted on Nov 3, 2021

Correspondence to

  • Jin-Heong Yim
  • Division of Advanced Materials Engineering, Kongju National University, 1223-24 Cheoandaero, Cheonan, Chungnam 31080, Korea

  • E-mail: jhyim@kongju.ac.kr