Article
  • Improvement of Mechanical Properties of DLP 3D Printouts Using Waterborne PUA/PEGDMA Mixed Oligomer Resin and Analysis of Filtration Characteristics of Resin Dilution
  • Hyeonwoo Hwangbo and Seog-Jin Jeon

  • Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea

  • 수계 PUA/PEGDMA 혼합 올리고머 레진에 의한 DLP 3D 프린팅 결과물의 기계적 물성 향상 및 레진 희석액의 여과특성 분석
  • 황보현우 · 전석진

  • 금오공과대학교 고분자공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Shahrubudin, N.; Lee, T. C.; Ramlan, R. An Overview on 3D Printing Technology: Technological, Materials, and Applications. Procedia Manuf. 2019, 35, 1286-1296.
  •  
  • 2. Ford, S.; Minshall, T. Invited Review Article: Where and How 3D Printing is Used in Teaching and Education. Addit. Manuf. 2019, 25, 131-150.
  •  
  • 3. Vivero-Lopez, M.; Xu, X.; Muras, A.; Otero, A.; Concheiro, A.; Gaisford, S.; Basit, A. W.; Alvarez-Lorenzo, C.; Goyanes, A. Anti-biofilm Multi Drug-loaded 3D Printed Hearing Aids. Mater. Sci. Eng. C 2021, 119, 111606.
  •  
  • 4. Hong, H.; Seo, Y. B.; Kim, D. Y.; Lee, J. S.; Lee, Y. J.; Lee, H.; Ajiteru, O.; Sultan, M. T.; Lee, O. J.; Kim, S. H.; Park, C. H. Digital Light Processing 3D Printed Silk Fibroin Hydrogel for Cartilage Tissue Engineering. Biomaterials 2020, 232, 119679.
  •  
  • 5. Lu, Y.; Mantha, S. N.; Crowder, D. C.; Chinchilla, S.; Shah, K. N.; Yun, Y. H.; Wicker, R. B.; Choi, J. W. Microstereolithography and Characterization of Poly(propylene fumarate)-based Drug-loaded Microneedle Arrays. Biofabrication 2015, 7, 045001.
  •  
  • 6. Yao, W.; Li, D.; Zhao, Y.; Zhan, Z.; Gin, Z.; Liang, H.; Yang, R. 3D Printed Multi-Functional Hydrogel Microneedles Based on High-Precision Digital Light Processing. Micromachines 2020, 11, 17.
  •  
  • 7. Yang, Y.; Zhou, Y.; Lin, X.; Yang, Q.; Yang, G. Printability of External and Internal Structures Based on Digital Light Processing 3D Printing Technique. Pharmaceutics 2020, 12, 207.
  •  
  • 8. Vaut, L.; Juszczyk, J. J.; Kamguyan, K.; Jensen, K. E.; Tosello, G.; Biosen, A. 3D Printing of Reservoir Devices for Oral Drug Delivery: From Concept to Functionality through Design Improvement for Enhanced Mucoadhesion. ACS Biomater. Sci. Eng. 2020, 6, 2478-2486.
  •  
  • 9. Kim, S.-Y.; Shin, Y.-S.; Jung, H.-D.; Hwang, C.-J.; Baik, H.-S.; Cha, J.-Y. Precision and Trueness of Dental Models Manufactured with Different 3-dimensional Printing Techniques. Am. J. Orthod. Dentofacial Orthop. 2018, 153, 144-153.
  •  
  • 10. Ge, Q.; Sakhaei, A. H.; Lee, H.; Dunn, C. K.; Fang, N. X.; Dunn, M. L. Multimaterial 4D Printing with Tailorable Shape Memory Polymers. Sci. Rep. 2016, 6, 31110.
  •  
  • 11. Borrello, J.; Nasser, P.; Iatridis, J. C.; Costa, K. D. 3D Printing a Mechanically-tunable Acrylate Resin on a Commercial DLP-SLA Printer. Addit. Manuf. 2018, 23, 374-380.
  •  
  • 12. Hwangbo, H.; Jeon, S.-J. Digital Light Processing 3D Printing of Multi-materials with Improved Adhesion Using Resins Containing Low Functional Acrylates. Korean J. Chem. Eng. [Online early access]. DOI: 10.1007/s11814-021-0934-x. Published Online: Jan. 9, 2022. https://link.springer.com/article/10.1007/s11814-021-0934-x (accessed Jan. 9, 2022).
  •  
  • 13. Bandyopadhyay, A.; Heer, B. Additive Manufacturing of Multi-material Structures. Composite Part B 2018, 129, 1-16.
  •  
  • 14. Stefaniak, A. B.; Bowers, L. N.; Knepp, A. K.; Luxton, T. P.; Peloquin, D. M.; Baumann, E. J.; Ham, J. E.; Wells, J. R.; Johnson, A. R.; LeBouf, R. F.; Su, F.-C.; Martin, S. B. Jr.; Virji, M. A. Particle and Vapor Emissions from vat Polymerization Desktop-scale 3-dimensional Printers. J. Occup. Environ. Hyg. 2019, 16, 519-531.
  •  
  • 15. Stephens, B.; Azimi, P.; El Orch, Z.; Ramos, T. Ultrafine Particle Emission from Desktop 3D Printers. Atmos. Environ. 2013, 79, 334-339.
  •  
  • 16. Bae, J.-H.; Won, J. C.; Lim, W. B.; Min, J. G.; Lee, J. H.; Kwon, C. R.; Lee, G. H.; Huh, P. Synthesis and Characteristics of Eco-Friendly 3D Printing Materials Based on Waterborne Polyurethane. Polymers 2021, 13, 44.
  •  
  • 17. Shie, M.-Y.; Chang, W.-C.; Wei, L.-J.; Huang, Y.-H.; Chen, C.-H.; Shih, C.-T.; Chen, Y.-W.; Shen, Y.-F. 3D Printing of Cyto- compatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. Materials 2017, 10, 136.
  •  
  • 18. Li, J.; Wu, C.; Chu, P. K.; Gelinsky, M. 3D Printing of Hydrogels: Rational Design Strategies and Emerging Biomedical Applications. Mater. Sci. Eng. R Rep. 2020, 140, 100543.
  •  
  • 19. Hinczewski, C.; Corbel, S.; Chartie, T. Ceramic Suspensions Suitable for Stereolithography. J. Eur. Ceram. Soc. 1998, 18, 583-590.
  •  
  • 20. Mark J. E. Elastomers with Multimodal Distributions of Network Chain Lengths. Macromol. Symp. 2003, 191, 121-130.
  •  
  • 21. Palaganas, N. B.; Mangadlao, J. D.; Leon, C. C.; Palaganas, J. O.; Pangilinan, K. D.; Lee, Y. J.; Advincula, R. C. 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography. ACS Appl. Mater. Interfaces 2017, 9, 34314-34324.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2022; 46(1): 30-35

    Published online Jan 25, 2022

  • 10.7317/pk.2022.46.1.30
  • Received on Aug 24, 2021
  • Revised on Oct 31, 2021
  • Accepted on Nov 2, 2021

Correspondence to

  • Seog-Jin Jeon
  • Department of Polymer Science and Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Korea

  • E-mail: sjjeon@kumoh.ac.kr