Article
  • Energy Storage Performance of Carbon Nanofiber Electrodes Derived from Crosslinked PI/PVDF Blends
  • Do Geun Lee, Gyeong Beom Ryoo, and Kyung-Hye Jung

  • School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Korea

  • 가교한 PI/PVDF 블렌드로부터 유도된 탄소 나노섬유 전극의 에너지 저장 특성
  • 이도근 · 류경범 · 정경혜

  • 대구가톨릭대학교 신소재화학공학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Pandolfo, A. G.; Hollenkamp, A. F. Carbon Properties and Their Role in Supercapacitors. J. Power Sources 2006, 157, 11-27.
  •  
  • 2. Pell, W. G.; Conway, B. E.; Adams, W. A.; de Oliveira, J. Electrochemical Efficiency in Multiple Discharge Recharge Cycling of Supercapacitors in Hybrid EV Applications. J. Power Sources 1999, 80, 134-141.
  •  
  • 3. Sharma, P.; Bhatti, T. A Review on Electrochemical Double-layer Capacitors. Energ. Convers. Manage. 2010, 51, 2901-2912.
  •  
  • 4. Mohapatra, S.; Acharya, A.; Roy, G. The Role of Nanomaterial for the Design of Supercapacitor. Lat. Am. J. Phys. Educ. 2012, 6, 380-384.
  •  
  • 5. Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gomez-Romero, P. Hybrid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 2015, 44, 1777-1790.
  •  
  • 6. Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Com- posites: A Review of synthesizing, properties and applications. Materials 2014, 7, 3919-3945.
  •  
  • 7. Lee, S.; Kim, J.; Ku, B.-C.; Kim, J.; Joh, H.-I. Structural Evolution of Polyacrylonitrile Fibers in Stabilization and Carbonization. Adv. Chem. Engineer. Sci. 2012, 2, 275-282.
  •  
  • 8. Jung, K.-H.; Ferraris, J. P. Preparation of Porous Carbon Nano- fibers Derived from PBI/PLLA for Supercapacitor Electrodes. Nanotechnology 2016, 27, 425708.
  •  
  • 9. Abeykoon, N. C.; Bonso, J. S.; Ferraris, J. P. Supercapacitor Performance of Carbon Nanofiber Electrodes Derived from Immiscible PAN/PMMA Polymer Blends. RSC Adv. 2015, 5, 19865-19873.
  •  
  • 10. Kim, C.; Jeong, Y. I.; Ngoc, B. T. N.; Yang, K. S.; Kojima, M.; Kim, Y. A.; Endo, M.; Lee, J. W. Synthesis and Characterization of Porous Carbon Nanofibers with Hollow Cores Through the Thermal Treatment of Electrospun Copolymeric Nanofiber Webs. Small 2007, 3, 91-95.
  •  
  • 11. Perananthan, S.; Bonso, J. S.; Ferraris, J. P. Supercapacitors Utilizing Electrodes Derived from Polyacrylonitrile Fibers Incorporating Tetramethylammonium Oxalate as a Porogen. Carbon 2016, 106, 20-27.
  •  
  • 12. Hwang, H.; Chae, D. W.; Eom, Y. Controlling Internal Pore Structure of Porous Carbon Nanofibers Based on the Miscibility between Polyacrylonitrile Matrix and Sacrificial Polymers. Polym. Korea 2021, 45, 228-235.
  •  
  • 13. Jung, K.-H.; Deng, W.; Smith Jr, D. W.; Ferraris, J. P. Carbon Nanofiber Electrodes for Supercapacitors Derived from New Precursor Polymer: Poly(acrylonitrile-co-vinylimidazole). Electro- chem. Commun. 2012, 23, 149-152.
  •  
  • 14. Jung, K.-H.; Kim, S. J.; Son, Y. J.; Ferraris, J. P. Fabrication of Carbon Nanofiber Electrodes Using Poly(acrylonitrile-co-vinyl- imidazole) and Their Energy Storage Performance. Carbon Lett. 2019, 29, 177-182.
  •  
  • 15. Abeykoon, N. C.; Mahmood, S. F.; Yang, D. J.; Ferraris, J. P. Electrospun Poly(acrylonitrile-co-itaconic Acid) as a Porous Carbon Precursor for High Performance Supercapacitor: Study of the Porosity Induced by in situ Porogen Activity of Itaconic Acid. Nanotechnology 2019, 30, 435401.
  •  
  • 16. Deng, W.; Lobovsky, A.; Iacono, S. T.; Wu, T.; Tomar, N.; Budy, S. M.; Long, T.; Hoffman, W. P.; Smith Jr, D. W. Poly(acrylonitrile-co-1-vinylimidazole): A New Melt Processable Carbon Fiber Precursor. Polymer 2011, 52, 622-628.
  •  
  • 17. Jung, K.-H.; Panapitiya, N.; Ferraris, J. P. Electrochemical Energy Storage Performance of Carbon Nanofiber Electrodes Derived from 6FDA-durene. Nanotechnology 2018, 29, 275701.
  •  
  • 18. Abeykoon, N. C.; Garcia, V.; Jayawickramage, R. A.; Perera, W.; Cure, J.; Chabal, Y. J.; Balkus, K. J.; Ferraris, J. P. Novel Binder-free Electrode Materials for Supercapacitors Utilizing High Surface Area Carbon Nanofibers Derived from Immiscible Polymer Blends of PBI/6FDA-DAM: DABA. RSC Adv. 2017, 7, 20947-20959.
  •  
  • 19. Jung, K.-H.; Ferraris, J. P. Preparation and Electrochemical Properties of Carbon Nanofibers Derived from Polybenzimidazole/Polyimide Precursor Blends. Carbon 2012, 50, 5309-5315.
  •  
  • 20. Kim, S. J.; Son, Y. J.; Jeon, B.; Han, Y. S.; Kim, Y.-J.; Jung, K.-H. Surface Crosslinking of 6FDA-durene Nanofibers for Porous Carbon Nanofiber Electrodes in Electrochemical Double Layer Capacitors. Nanotechnology 2020, 31, 215404.
  •  
  • 21. Tavanai, H.; Jalili, R.; Morshed, M. Effects of Fiber Diameter and CO2 Activation Temperature on the Pore Characteristics of Polyacrylonitrile Based Activated Carbon Nanofibers. Surf. Interface Anal. 2009, 41, 814-819.
  •  
  • 22. Kanehashi, S.; Nakagawa, T.; Nagai, K.; Duthie, X.; Kentish, S.; Stevens, G. Effects of Carbon Dioxide-induced Plasticization on the Gas Transport Properties of Glassy Polyimide Membranes. J. Membr. Sci. 2007, 298, 147-155.
  •  
  • 23. Lee, D. G.; Lee, B. C.; Jung, K.-H. Preparation of Porous Carbon Nanofiber Electrodes Derived from 6FDA-Durene/PVDF Blends and Their Electrochemical Properties. Polymers 2021, 13, 720.
  •  
  • 24. Wijenayake, S. N.; Panapitiya, N. P.; Versteeg, S. H.; Nguyen, C. N.; Goel, S.; Balkus Jr, K. J.; Musselman, I. H.; Ferraris, J. P. Surface Cross-linking of ZIF-8/Polyimide Mixed Matrix Membranes (MMMs) for Gas Separation. Ind. Eng. Chem. Res. 2013, 52, 6991-7001.
  •  
  • 25. Shao, L.; Lau, C.-H.; Chung, T.-S. A Novel Strategy for Surface Modification of Polyimide Membranes by Vapor-phase Ethylene- diamine (EDA) for Hydrogen Purification. Int. J. Hydrogen Energy 2009, 34, 8716-8722.
  •  
  • 26. Liao, C.; Zhao, J.; Yu, P.; Tong, H.; Luo, Y. Synthesis and Characterization of SBA-15/Poly(vinylidene fluoride)(PVDF) Hybrid Membrane. Desalination 2010, 260, 147-152.
  •  
  • 27. Ouyang, Z.-W.; Chen, E.-C.; Wu, T.-M. Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nano- composites. Materials 2015, 8, 4553-4564.
  •  
  • 28. Inagaki, M.; Ohta, N.; Hishiyama, Y. Aromatic Polyimides as Carbon Precursors. Carbon 2013, 61, 1-21.
  •  
  • 29. Hashemi, M.; Rahmanifar, M. S.; El-Kady, M. F.; Noori, A.; Mousavi, M. F.; Kaner, R. B. The Use of an Electrocatalytic Redox Electrolyte for Pushing the Energy Density Boundary of a Flexible Polyaniline Electrode to a New Limit. Nano Energy 2018, 44, 489-498.
  •  
  • 30. Bard, A. J.; Abruna, H. D.; Chidsey, C. E.; Faulkner, L. R.; Feldberg, S. W.; Itaya, K.; Majda, M.; Melroy, O.; Murray, R. W. The Electrode/Electrolyte Interface - A Status Report. J. Phys. Chem. 1993, 97, 7147-7173.
  •  
  • 31. Ji, L.; Zhang, X. Fabrication of Porous Carbon Nanofibers and Their Application as Anode Materials for Rechargeable Lithium-ion Batteries. Nanotechnology 2009, 20, 155705.
  •  
  • 32. Kim, B.-H.; Yang, K. S. Enhanced Electrical Capacitance of Porous Carbon Nanofibers Derived from Polyacrylonitrile and Boron Trioxide. Electrochim. Acta 2013, 88, 597-603.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(6): 927-933

    Published online Nov 25, 2021

  • 10.7317/pk.2021.45.6.927
  • Received on Jul 22, 2021
  • Revised on Sep 6, 2021
  • Accepted on Sep 10, 2021

Correspondence to

  • Kyung-Hye Jung
  • School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Korea

  • E-mail: khjung@cu.ac.kr