Article
  • Control of Dissolution Rate of Sodium-Alginate/Polyacrylamide Hydrogel for Selectively Dissolvable Water-Blocking Device
  • Gwang-Mook Choi , Jin-Ju Choi, Woo-Cheol Kim*, Hwanmin Hwang**, Myungwoong Kim**, and Min-Jun Kim

  • Advanced Materials & Processing Center, Institute for Advanced Engineering, Yongin 17180, Korea
    *R & D Institute, Korea District Heating Corp., Yongin 17099, Korea
    **Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Korea

  • 선택적 수용성 차수재 개발을 위한 나트륨-알지네이트/폴리아크릴아마이드 하이드로겔의 수용 속도 제어
  • 최광묵 ·최진주 ·김우철* ·황환민** ·김명웅** ·김민준

  • 고등기술연구원 신소재공정센터, *한국지역난방공사 미래개발원, **인하대학교 화학·화학공학 융합학과

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Guo, J.; Liu, X.; Jiang, N.; Yetisen, A. K.; Yuk, H.; Yang, C.; Khademhosseini, A.; Zhao, X.; Yun, S.-H. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Adv. Mater. 2016, 28, 10244-10249.
  •  
  • 2. Liu, S.; Li, L. Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429-26437.
  •  
  • 3. Cai, G.; Wang, J.; Qian, K.; Chen, J.; Li, S.; Lee, P. S. Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection. Adv. Sci. 2017, 4, 1600190.
  •  
  • 4. Xia, S.; Song, S.; Jia, F.; Gao, G. A Flexible, Adhesive and Self-Healable Hydrogel-Based Wearable Strain Sensor for Human Motion and Physiological Signal Monitoring. J. Mater. Chem. B. 2019, 7, 4638-4648.
  •  
  • 5. Yue, Y.; Wang, X.; Wu, Q.; Han, J.; Jiang, J. Assembly of Polyacrylamide-Sodium Alginate-Based Organic-Inorganic Hydrogel with Mechanical and Adsorption Properties. Polymers 2019, 11, 1239.
  •  
  • 6. Guo, H.; Jiao, T.; Zhang, Q.; Guo, W.; Peng, Q.; Yan, X. Preparation of Graphene Oxide-Based Hydrogels as Efficient Dye Adsorbents for Wastewater Treatment. Nanoscale Res. Lett. 2015, 10, 272.
  •  
  • 7. Pakdel, P. M.; Peighambardoust, S. J. A Review on Acrylic Based Hydrogels and Their Applications in Wastewater Treatment. J. Environ. Manage. 2018, 217, 123-143.
  •  
  • 8. Xiaofeng Yi, X.; Zhiqun Xu, Z.; Yan Liu, Y.; Xueyong Guo, X.; Minrui Ou, M.; Xiaoping Xu, X. Highly Efficient Removal of Uranium(VI) from Wastewater by Polyacrylic Acid Hydrogels. RSC Adv. 2017, 7, 6278-6287.
  •  
  • 9. Yi, J.; Nguyen, K. -C. T.; Wang, W.; Yang, W.; Pan, M.; Lou, E.; Major, P. W.; Le, L. H.; Zeng, H. Polyacrylamide/Alginate Double-Network Tough Hydrogels for Intraoral Ultrasound Imaging. J. Colloid Interface Sci. 2020, 578, 598-607.
  •  
  • 10. Ruland, A.; Gilmore, K. J.; Daikuara, L. Y.; Fay, C. D.; Yue, Z.; Wallace, G. G. Quantitative Ultrasound Imaging of Cell-Laden Hydrogels and Printed Constructs. Acta Biomater. 2019, 91, 173-185.
  •  
  • 11. Jiang, H.; Carter, N. M.; Zareei, A.; Nejati, S.; Waimin, J. F.; Chittiboyina, S.; Niedert, E. E.; Soleimani, T.; Lelièvre, S. A.; Goergen, C. J.; Rahimi, R. A Wireless Implantable Strain Sensing Scheme Using Ultrasound Imaging of Highly Stretchable Zinc Oxide/Poly Dimethylacrylamide Nanocomposite Hydrogel. ACS Appl. Bio Mater. 2020, 3, 4012-4024.
  •  
  • 12. Jiang, H.; Carrillo, K. T.; Kobayashi, T. Ultrasound Stimulated Release of Mimosa Medicine from Cellulose Hydrogel Matrix, Ultrason. Sonochem. 2016, 32, 398-406.
  •  
  • 13. Neethu, T. M.; Dubey, P. K.; Kaswala, A. R. Prospects and Applications of Hydrogel Technology in Agriculture. Int. J. Curr. Microbiol. App. Sci. 2018, 7, 3155-3162.
  •  
  • 14. El‐Asmar, J.; Jaafar, H.; Bashour, I.; Farran, M. T.; Saoud, I. P. Hydrogel Banding Improves Plant Growth, Survival, and Water Use Efficiency in Two Calcareous Soils. Clean-Soil Air Water 2017, 45, 1700251.
  •  
  • 15. Saha, A.; Rattan, B.; Sekharan, S.; Manna, U. Quantifying the Interactive Effect of Water Absorbing Polymer (WAP)-Soil Texture on Plant Available Water Content and Irrigation Frequency. Geoderma 2020, 368, 114310.
  •  
  • 16. Zhu, J.; Hu, J.; Marchant, R. E. Biomimetic Scaffolds for Stem Cell Based Tissue Engineering. In Biomimetic Biomaterials, Ruys, A. Ed.; Woodhead Publishing: Sawston, 2013; pp 238-275.
  •  
  • 17. Xiong, G.; Luo, H.; Gu, F.; Zhang, J.; Hu, D.; Wan, Y. A Novel In Vitro Three-Dimensional Macroporous Scaffolds from Bacterial Cellulose for Culture of Breast Cancer Cells. J. Biomater. Nanobiotechnol. 2013, 4, 316-326.
  •  
  • 18. McKinnon, D. D.; Kloxin, A. M.; Anseth, K. S. Synthetic Hydrogel Platform for Three-dimensional Culture of Embryonic Stem Cell-derived Motor Neurons. Biomater. Sci. 2013, 1, 460-469.
  •  
  • 19. Rustad, K. C.; Wong, V. W.; Sorkin, M.; Glotzbach, J. P.; Major, M. R.; Rajadas, J.; Longaker, M. T.; Gurtner, G. C. Enhancement of Mesenchymal Stem Cell Angiogenic Capacity and Stemness by a Biomimetic Hydrogel Scaffold. Biomaterials 2012, 33, 80-90.
  •  
  • 20. Serban, B. A.; Barrett-Catton, E.; Serban, M. A. Tetraethyl Orthosilicate-Based Hydrogels for Drug Delivery-Effects of Their Nanoparticulate Structure on Release Properties. Gels 2020, 6, 38.
  •  
  • 21. Zuckerman, S. T.; Rivera-Delgado, E.; Haley, R. M.; Korley, J. N.; von Recum, H. A.Elucidating the Structure-Function Relationship of Solvent and Cross-Linker on Affinity-Based Release from Cyclodextrin Hydrogels. Gels 2020, 6, 9.
  •  
  • 22. Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature 2012, 489, 133-136.
  •  
  • 23. Darnell, M. C.; Sun, J.-Y.; Mehta, M.; Johnson, C.; Arany, P. R.; Suo, Z.; Mooney, D. J. Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels. Biomaterials 2013, 34, 8042-8048.
  •  
  • 24. Chavda, H. V.; Patel, C. N. Effect of Crosslinker Concentration on Characteristics of Superporous Hydrogel. Int. J. Pharm. Investig. 2011, 1, 17-21.
  •  
  • 25. Meyer, A.; Jones, N.; Lin, Y.; Kranbuehl, D. Characterizing and Modeling the Hydrolysis of Polyamide-11 in a pH 7 Water Environment. Macromolecules 2002, 35, 2784-2798.
  •  
  • 26. Matsushima, K.; Minoshima, H.; Kawanami, H.; Ikushima, Y.; Nishizawa, M.; Kawamukai, A.; Hara, K. Decomposition Reaction of Alginic Acid Using Subcritical and Supercritical Water. Ind. Eng. Chem. Res. 2005, 44, 9626-9630.
  •  
  • 27. Smith, R. M.; Hansen, D. E. The pH-Rate Profile for the Hydrolysis of a Peptide Bond. J. Am. Chem. Soc. 1998, 120, 8910-8913.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(6): 841-848

    Published online Nov 25, 2021

  • 10.7317/pk.2021.45.6.841
  • Received on Mar 17, 2021
  • Revised on May 20, 2021
  • Accepted on Jun 2, 2021

Correspondence to

  • Gwang-Mook Choi, and Min-Jun Kim
  • Advanced Materials & Processing Center, Institute for Advanced Engineering, Yongin 17180, Korea

  • E-mail: gmchoi@iae.re.kr, minjun@iae.re.kr