Article
  • Effect of Comonomer Composition and Content on the Polymerization and Thermal Behavior of Polyacrylonitrile-Based Carbon Fiber Precursors
  • Ji-Young Noh, Yun-Su Kuk*, Tae-Eun Kim, Sung-Ryong Kim*, Ki-Young Kim**, Jung-Hyurk Lim , and Kyung-Min Kim

  • Department of Polymer Science and Engineering/Department of IT-Energy Convergence (BK21 PLUS), Korea National University of Transportation, Chungju, Chungbuk 27496, Korea
    *Korea Carbon Industry Promotion Agency 111, Jeonju, Jeonbuk 54852, Korea
    **Department of Textile Convergence of Biotechnology & Nanotechnology, Korea Institute of Industrial Technology, Ansan, Gyeonggi 15588, Korea

  • 공단량체의 조성과 함량이 폴리아크릴로니트릴계 탄소섬유 전구체의 중합 및 열적 거동에 미치는 영향
  • 노지영 · 국윤수* · 김태은 · 김성룡* · 김기영** · 임정혁 · 김경민

  • 한국교통대학교 나노화학소재공학전공/BK21 친환경 스마트 미래교통 연구단, *한국탄소산업진흥원, **한국생산기술연구원 바이오나노섬유융합연구원

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Liu, Y.; Kumar, S. Recent Progress in Fabrication, Structure, and Properties of Carbon Fibers. J. Macromol. Sci., Polym. Rev. 2012, 52, 234-258.
  •  
  • 2. Sen, K.; Bahrami, S. H.; Bajaj, P.High-Performance Acrylic Fibers. J. Macromol. Sci., Polym. Rev. 1996, 36, 1-76.
  •  
  • 3. Sharifnejad, F.; Bahrami, S. H.; Noorpanah, P. Kinetics Studies on Copolymerization of Acrylonitrile Vinyl Acids by Solvent-Water Suspension Polymerization. J. Appl. Polym. Sci. 2005, 97, 1284-1291.
  •  
  • 4. Xue, Y.; Liu, J.; Liang, J. Correlative Study of Critical Reactions in Polyacrylonitrile Based Carbon Fiber Precursors During Thermal-Oxidative Stabilization. Polym. Degrad. Stabil. 2013, 98, 219-229.
  •  
  • 5. Rahaman, M. S. A.; Ismail, A. F.; Mustafa, A. A Review of Heat Treatment on Polyacrylonitrile Fiber. Polym. Degrad. Stabil. 2007, 92, 1421-1432.
  •  
  • 6. Khayyam, H.; Jazar, R. N.; Nunna, S.; Golkarnarenji, G.; Badii, K.; Fakhrhoseini, S. M.; Kumar, S.; Naebe, M. PAN Precursor Fabrication, Applications and Thermal Stabilization Process in Carbon Fiber Production: Experimental and Mathematical Modelling. Prog. Mater. Sci. 2020, 107, 100575-100613.
  •  
  • 7. Fu, Z.; Gui, Y.; Liu, S.; Wang, Z.; Liu, B.; Cao, C.; Zhang, H. Effects of an Itaconic Acid Comonomer on the Structural Evolution and Thermal Behaviors of Polyacrylonitrile Used for Polyacrylonitrile‐Based Carbon Fibers. J. Appl. Polym. Sci. 2014, 131, 40834-40841.
  •  
  • 8. Quyang, Q.; Cheng, L.; Wang, H. J.; Li, K. X. DSC Study of Stabilization Reactions in Poly(acrylonitrile-co-Itaconic acid) with Peak-Resolving Method. J. Therm. Anal. Calorim. 2008, 94, 85-88.
  •  
  • 9. Catta Preta, I. F.; Sakata, S. K.; Garcia, G.; Zimmermann, J. P.; Galembeck, F.; Giovedi, C. Thermal Behavior of Polyacrylo- nitrile Polymers Synthesized Under Different Conditions and Comonomer Compositions. J. Therm. Anal. Calorim. 2007, 87, 657-659.
  •  
  • 10. Sen, K.; Bajaj, P.; Sreekumar, T. V. Thermal Behavior of Drawn Acrylic Fibers. J. Polym. Sci. B Polym. Phys. 2003, 41, 2949-2958.
  •  
  • 11. Bajaj, P.; Sreekumar, T. V.; Sen, K. Thermal Behavior of Acrylonitrile Copolymers Having Methacrylic and Itaconic Acid Comonomers. Polymer 2001, 42, 1707-1718.
  •  
  • 12. Quyang, Q.; Cheng, L.; Wang, H.; Li, K. Mechanism and Kinetics of the Stabilization Reactions of Itaconic Acid-Modified Polyacrylonitrile. Polym. Degrad. Stabil. 2008, 93, 1415-1421.
  •  
  • 13. Fu, Z.; Liu, B.; Deng, Y.; Ma, J.; Cao, C.; Wang, J.; Ao, Y.; Zhang, H. The Suitable Itaconic Acid Content in Polyacrylo- nitrile Copolymers Used for PAN‐Based Carbon Fibers. J. Appl. Polym. Sci. 2016, 133, 43919-43928.
  •  
  • 14. Zhao, Y. Q.; Wang, C. G.; Bai, Y. J.; Chen, G. W.; Jing, M.; Zhu, B. Property Changes of Powdery Polyacrylonitrile Synthesized by Aqueous Suspension Polymerization During Heat-Treatment Process Under Air Atmosphere. J. Colloid Interf. Sci. 2009, 329, 48-53.
  •  
  • 15. Hao, J.; Wei, H.; Lu, C.; Liu, Y. New Aspects on the Cyclization Mechanisms of Poly(acrylonitrile-co-itaconic acid). Eur. Polym. J. 2019, 121, 109313-109320.
  •  
  • 16. Kim, M. H.; Ha, Y. M.; Kim, M. A.; Hassan, M. S.; Gu, J. L.; Kim, H. C.; Khil, M. S. Effect of Adding POSS on the Polymerization and Thermal Properties of Polyacrylonitrile. Text. Sci. Eng. 2012, 49, 402-410.
  •  
  • 17. Devasia, R.; Nair, C. P. R.; Sivadasan, P.; Ninan, K. N. High Char‐Yielding Poly[acrylonitrile‐co‐(itaconic acid)‐co‐(methyl acrylate)]: Synthesis and Properties. Polym. Int. 2005, 54, 1110-1118.
  •  
  • 18. Bang, Y. H.; Lee, S.; Cho, H. H. Effect of Methyl Acrylate Composition on the Microstructure Changes of High Molecular Weight Polyacrylonitrile for Heat Treatment. J. Appl. Polym. Sci. 1998, 68, 2205-2213.
  •  
  • 19. Lee, J. M.; Kang, S. J.; Park, S. J. Synthesis of Polyacrylonitrile Based Nanoparticles via Aqueous Dispersion Polymerization. Macromol. Res. 2009, 17, 817-820.
  •  
  • 20. Ito, S.; Okada, C. Molecular Weight Distribution of the Acrylonitrile-Vinyl Acetate Copolymer Prepared by Redox Polymerization. Sen'i Gakkaishi 1986, 42, T618-T625.
  •  
  • 21. Zhu, Y.; Wilding, M. A.; Mukhopadhyay, S. K. Estimation, Using Infrared Spectroscopy, of the Cyclization of Poly(acrylonitrile) During the Stabilization Stage of Carbon Fiber Production. J. Mater. Sci. 1996, 31, 3831-3837.
  •  
  • 22. Nguyen-Thai, N. U.; Hong, S. C. Structural Evolution of Poly(acrylonitrile-co-itaconic acid) During Thermal Oxidative Stabilization for Carbon Materials. Macromolecules 2013, 46, 5882-5889.
  •  
  • 23. Valente Nabais, J. M.; Carrott, P. J. M.; Ribeiro Carrott, M. M. L. From Commercial Textile Fibres to Activated Carbon Fibres: Chemical Transformations. Mater. Chem. Phys. 2005, 93, 100-108.
  •  
  • 24. Coleman, M. M.; Sivy, G. T. Fourier Transform IR (FTIR) Studies of the Degradation of Polyacrylonitrile Copolymers. J. Am. Chem. Soc. 1983, 32, 559-570.
  •  
  • 25. Tsai, J. S.; Lin, C. H. Effect of Comonomer Composition on the Properties of Polyacrylonitrile Precursor and Resulting Carbon Fiber. J. Appl. Polym. Sci. 1991, 43, 679-685.
  •  
  • 26. Gupta, A. K.; Paliwal, D. K.; Bajaj, P. Effect of an Acidic Comonomer on Thermo Oxidative Stabilization of Polyacrylo- nitrile. J. Appl. Polym. Sci. 1995, 58, 1161-1174.
  •  
  • 27. Bajaj, P.; Roopanwal, A. K. Thermal Stabilization of Acrylic Precursors for the Production of Carbon fibers: An Overview. J. Macromol. Sci., Polym. Rev. 1997, 37, 97-147.
  •  
  • 28. Hao, J.; Li, W.; Suo, X.; Wei, H.; Lu, C.; Liu, Y. Highly Isotactic (> 60%) Polyacrylonitrile-Based Carbon Fiber: Precursor Synthesis, Fiber Spinning, Stabilization and Carbonization. Polymer 2018, 157, 139-150.
  •  
  • 29. Surianarayanan, M.; Uchida, T.; Wakakura, M. Evolved Gases by Simultaneous TG-MS Technique and Associated Thermal Hazard in Drying of Polyacrylonitrile. J. Loss Pre. Process Ind. 1998, 11, 99-108.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2018 Impact Factor : 0.500
  • Indexed in SCIE

This Article

  • 2021; 45(5): 793-802

    Published online Sep 25, 2021

  • 10.7317/pk.2021.45.5.793
  • Received on May 27, 2021
  • Revised on Jul 8, 2021
  • Accepted on Jul 8, 2021

Correspondence to

  • Jung-Hyurk Lim and Kyung-Min Kim
  • Department of Polymer Science and Engineering/Department of IT-Energy Convergence (BK21 PLUS), Korea National University of Transportation, Chungju, Chungbuk 27496, Korea

  • E-mail: jhlim@ut.ac.kr, kmkim@ut.ac.kr