Article
  • Characteristics of Ball Milled CNT-Graphene Hybrid Nanoparticle and the Sheet Resistivity of PET Film Coated with Nanoparticles
  • Gyu-sik Choi*, Young Sil Lee**, and Kwan Han Yoon

  • Dept. of Chemical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi 39177, Korea
    *Applied Carbon nano, No.104, Pohang Technopark 4th Venture Bldg, 364 Jigok-ro, Nam-gu, Pohang, Gyeongbuk 37668, Korea
    **Industry-Academic Cooperation Foundation, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi 39177, Korea

  • 볼밀링으로 제조된 CNT-Graphene 하이브리드 나노 입자의 특성 및 나노 입자가 코팅된 PET 필름의 표면저항
  • 최규식* · 이영실** · 윤관한

  • 금오공과대학교 화학공학과, *어플라이드 카본나노, **금오공과대학교 산학협력단

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56-58.
  •  
  • 2. Ajayan, P. M. Nanotubes from Carbon. Chem. Rev. 1999, 99, 1787-1800.
  •  
  • 3. Popov, V. N. Carbon Nanotubes: Properties and Application. Mater. Sci. Eng. R Rep. 2004, 43, 61-102.
  •  
  • 4. Frank, S.; Poncharal, P.; Wang, Z. L.; de Heer, W. A. Carbon Nanotube Quantum Resistors. Science 1998, 280, 1744-1746.
  •  
  • 5. Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.; Colbert, D. T.; Scuseria, G. E.; Tomanek, D.; Fischer, J. E.; Smalley, R. E. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483-487.
  •  
  • 6. Hone, J.; Whitney, M.; Zettl, A. Thermal Conductivity of Single-walled Carbon Nanotubes. Synthetic Metals 1999, 103, 2498-2499.
  •  
  • 7. Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal Conductivity of Single-walled Carbon Nanotubes. Phys. Rev. B 1999, 59, R2514-R2516.
  •  
  • 8. Park, S.; Ruoff, R. S. Chemical Methods for the Production of Graphenes. Nat. Nanotechnol. 2009, 4, 217-224.
  •  
  • 9. Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183-191.
  •  
  • 10. Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making Graphene Visible. Appl. Phys. Lett. 2007, 91, 063124.
  •  
  • 11. Lemme, M. C.; Echtermeyer, T. J.; Baus, M.; Kurz, H. A Graphene Field-effect Device. IEEE Electron Device Lett. 2007, 28, 282-284.
  •  
  • 12. Lin, Y. M.; Jenkins, K. A.; Valdes-Garcia, A.; Small, J. P.; Farmer, D. B.; Avouris, P. Operation of Graphene Transistors at Gigahertz Frequencies. Nano Lett. 2009, 9, 422-426.
  •  
  • 13. Kim, S.; Nah, J.; Jo, I.; Shahrjerdi, D.; Colombo, L.; Yao, Z.; Tutuc, E.; Banerjee, S. K. Realization of a High Mobility Dual-gated Graphene Field-effect Transistor with Al2O3 Dielectric. Appl. Phys. Lett. 2009, 94, 062107.
  •  
  • 14. Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud′homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B 2006, 110, 8535-8539.
  •  
  • 15. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly Conducting Graphene Sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538-542.
  •  
  • 16. Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.
  •  
  • 17. Virojanadara, C.; Syvajarvi, M.; Yakimova, R.; Johansson, L. I.; Zakharov, A. A.; Balasubramanian, T. Homogeneous Large-area Graphene Layer Growth on 6H-SiC(0001). Phys. Rev. B 2008, 78, 245403.
  •  
  • 18. Virojanadara, C.; Yakimova, R.; Osiecki, J. R.; Syvajarvi, M.; Johansson, L. I.; Zakharov, A. A. Substrate Orientation: A Way Towards Higher Quality Monolayer Graphene Growth on 6H-SiC(0 0 0 1). Surf. Sci. Lett. 2009, 603, L87-L90.
  •  
  • 19. Huang, H.; Chen, W.; Chen, S.; Wee, A. T. S. Bottom-up Growth of Epitaxial Graphene on 6H-SiC (0001). ACS Nano 2008, 2, 2513-2518.
  •  
  • 20. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science 2006, 312, 1191-1196.
  •  
  • 21. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area Synthesis of High-quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312-1314.
  •  
  • 22. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature 2009, 457, 706-710.
  •  
  • 23. Cai, D.; Song, M.; Xu, C. Highly Conductive Carbon‐Nanotube/Graphite‐Oxide Hybrid Films. Adv. Mater. 2008, 20, 1706-1709.
  •  
  • 24. Lv, R.; Cruz-Silva, E.; Terrones, M. Building Complex Hybrid Carbon Architectures by Covalent Interconnections: Graphene–Nanotube Hybrids and More. ACS Nano 2014, 8, 4061-4069.
  •  
  • 25. Tung, V. C.; Chen, L.-M.; Allen, M. I.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-Temperature Solution Processing of Graphene−Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949-1955.
  •  
  • 26. Deng, J.-H.; Cheng, G.-A.; Zheng, R.-T.; Yu, B.; Li, G.-Z.; Hou, X.-G.; Zhao, M.-L.; Li, D.-J. Catalyst-free, Self-assembly, and Controllable Synthesis of Graphene Flake–carbon Nanotube Composites for High-performance Field Emission. Carbon 2014, 67, 525-533.
  •  
  • 27. Kholmanov, I. N.; Magnuson, C. W.; Piner, R.; Kim, J. Y.; Aliev, A. E.; Tan, C.; Kim, T. Y.; Zakhidov, A. A.; Sberveglieri, G.; Baughman, R. H.; Ruoff, R. S. Optical, Electrical, and Electro- mechanical Properties of Hybrid Graphene/Carbon Nanotube Films. Adv. Mater. 2015, 27, 3053-3059.
  •  
  • 28. Li, B.; Cao, X.; Ong, H. G.; Cheah, J. W.; Zhou, X.; Yin, Z.; Li, H.; Wang, J.; Boey, F.; Huang, W.; Zhang, H. All‐Carbon Electronic Devices Fabricated by Directly Grown Single‐Walled Carbon Nanotubes on Reduced Graphene Oxide Electrodes. Adv. Mater. 2010, 22, 3058-3061.
  •  
  • 29. Kim, S. H.; Song, W.; Jung, M. W.; Kang, M.-A.; Kim, K.; Chang, S.-J.; Lee, S. S.; Lim, J.; Hwang, J.; Myung, S.; An, K.-S. Carbon Nanotube and Graphene Hybrid Thin Film for Transparent Electrodes and Field Effect Transistors, Adv. Mater. 2014, 26, 4247-4252.
  •  
  • 30. Kim, Y. S.; Kumar, K.; Fisher, F. T.; Yang, E. H. Out-of-plane Growth of CNTs on Graphene for Supercapacitor Applications. Nanotechnology 2011, 23, 015301.
  •  
  • 31. Cui, X.; Lv, R.; Sagar, R. U. R.; Liu, C.; Zhang, Z. Reduced Graphene Oxide/carbon Nanotube Hybrid Film as High Performance Negative Electrode for Supercapacitor. Electrochim. Acta 2015, 169, 342-350.
  •  
  • 32. Cai, D.; Song, M.; Xu, C. Highly Conductive Carbon‐Nanotube/Graphite‐Oxide Hybrid Films. Adv. Mater. 2008, 20, 1706-1709.
  •  
  • 33. Li, Y.; Peng, Z.; Larios, E.; Wang, G.; Lin, J.; Yan, Z.; Ruiz-Zepeda, F.; José-Yacamán, M.; Tour, J. M. Rebar Graphene from Functionalized Boron Nitride Nanotubes. ACS Nano 2015, 9, 532-538.
  •  
  • 34. Odedairo, T.; Ma, J.; Gu, Y.; Chen, J.; Zhao, X. S.; Zhu, Z. One-pot Synthesis of Carbon Nanotube–graphene Hybrids via Syngas Production. J. Mater. Chem. A 2014, 2, 1418-1428.
  •  
  • 35. Dong, Y.; Zhang, S.; Du, X.; Hong, S.; Zhao, S.; Chen, Y.; Chen, X.; Song, H. Boosting the Electrical Double‐Layer Capacitance of Graphene by Self‐Doped Defects through Ball‐Milling. Adv. Fuct. Mat. 2019, 29, e1901127.
  •  
  • 36. Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Ultrahigh Conductive Graphene Paper Based on Ball‐Milling Exfoliated Graphene. Adv. Funct. Mater. 2017, 27, e1700240.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(4): 533-540

    Published online Jul 25, 2021

  • 10.7317/pk.2021.45.4.533
  • Received on Feb 9, 2021
  • Revised on Mar 11, 2021
  • Accepted on Mar 16, 2021

Correspondence to

  • Kwan Han Yoon
  • Dept. of Chemical Engineering, Kumoh National Institute of Technology, 1 Yangho-dong, Gumi 39177, Korea

  • E-mail: khyoon@kumoh.ac.kr