Article
  • Effect of the Reinforcement Phase on the Mechanical and Biocompatibility Properties of PLA Matrix Nano Composites
  • Hatice Evlen and Gülçin Erel*,†

  • Industrial Design Engineering Department, Technology Faculty, Karabuk University, 78100, Turkey
    *Industrial Design Engineering Department, Graduate Education Institute, Karabuk University, 78100, Turkey

  • 강화 단계가 PLA 매트릭스 나노 복합재의 기계적 및 생체 적합성 특성에 미치는 영향
  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Dursun, S.; Erkan, N.; Yeşiltaş, M. Doğal Biyopolimer Bazlı (biyobozunur) Nanokompozit Filmler ve su Ürünlerindeki Uygulamaları. J. of Fish Sci. 2010, 4, 50.
  •  
  • 2. Henton, D. E.; Gruber, P.; Lunt, J.; Randall, J. Polylactic Acid Technology. In Natural Fibers, Biopolymers, And Biocomposites; Amar, K. M.; Manusri, M.; Lawrence, T. D., Eds.; CRC Press: Boca Raton, USA, 2005; pp 527-577.
  •  
  • 3. Nehal, S.; Mohamed, A.; Mohamed, G.; Sahar, E. Synthesis and Design of Norfloxacin Drug Delivery System Based on PLA/TiO2 Nanocomposites: Antibacterial and Antitumor Activities. Mater. Sci. and Eng. C 2020, 108, 1-11.
  •  
  • 4. Almeida, J. F. M.; Silva, A. L. N.; Escócio, V. A.; Fonseca Thom, A. H. M.; Sousa, A. M. F.; Nascimento, C. R.; Bertolino, L. C. Rheological, Mechanical and Morphological Behavior of Polylactide/nano-sized Calcium Carbonate Composites. Polym. Bull. 2016, 73, 3531-3545.
  •  
  • 5. Costa, R. G.; Brichi, G. S.; Ribeiro, C.; Mattoso, L. H. Nano- composite Fibers of Poly(lactic acid)/titanium Dioxide Prepared by Solution Blow Spinning. Polym. Bull. 2016, 73, 2973-2985.
  •  
  • 6. Kothapalli, C. R.; Shaw, M. T.; Wei, M. Biodegradable HA-PLA 3-D Porous Scaffolds: Effect of Nano-sized Filler Content on Scaffold Properties. Acta Biomater. 2005, 1,653-662.
  •  
  • 7. Watazu, A.; Kamiya, A.; Zhu, J.; Nonami, T.; Sonoda, T.; Shi, W.; Naganuma, K. Mechanical Properties of Hydroxyapatite-granule-implanted Titanium Alloy. Key Eng. Mater. 2003, 240, 931-934.
  •  
  • 8. Kretlow, J. D.; Young, S.; Klouda, L.; Wong, M.; Mikos, A. G. Injectable Biomaterials for Regenerating Complex Craniofacial Tissues. Adv. Mater. 2009, 21, 3368-3393.
  •  
  • 9. Nazhat, S. N.; Kellomaki, M.; Törmala, P.; Tanner, K. E.; Bonfield, W.; Dynamic Mechanical Characterization of Biodegradable Composites of Hydroxyapatite and Polylactides. J. Bio. Mater. Res. 2001, 58, 335-343.
  •  
  • 10. Senatov, F. S.; Niaza, K. V.; Zadorozhnyy, M. Y.; Maksimkin, A. V.; Kaloshkin, S. D.; Estrin, Y. Z. Mechanical Properties and Shape Memory Effect of 3D-printed PLA-based Porous Scaffolds. J. Mech. Behav. Biomed. Mater. 2016, 57, 139-148.
  •  
  • 11. Talal, A.; McKay, I. J.; Tanner, K. E.; Hughes, F. J. Effects of Hydroxyapatite and PDGF Concentrations on Osteoblast Growth in a Nanohydroxyapatite-polylactic Acid Composite for Guided Tissue Regeneration. J. Mater. Sci: Mater. Med. 2013, 24, 2211-2221.
  •  
  • 12. Demirkol, N. Bioactivity Properties and Characterization of Commercial Synthetic Hydroxyapatite-5 wt% Niobium (V) Oxide-5 wt% Magnesium Oxide Composite. Acta Phys. Polonica A. 2017, 132, 786-788.
  •  
  • 13. Wei, G.; Ma, P. X. Structure and Properties of Nano-hydroxyapatite/polymer Composite Scaffolds for Bone Tissue Engineering. Biomater. 2004, 25, 4749-4757.
  •  
  • 14. Tanodekaew, S.; Channasanon, S.; Kaewkong, P.; Uppanan, P. PLA-HA Scaffolds: Preparation and Bioactivity. Proced. Eng. 2013, 59, 144-149.
  •  
  • 15. Mao, D.; Li, Q.; Bai, N.; Dong, H.; Li, D. Porous Stable Poly- (lactic acid)/ethyl Cellulose/hydroxyapatite Composite Scaffolds Prepared by a Combined Method for Bone Regeneration. Carbohydr. Polym. 2018, 180, 104-111.
  •  
  • 16. Lu, X.; Lv, X.; Sun, Z.; Zheng, Y. Nanocomposites of Poly(l-lactide) and Surface-grafted TiO2 Nanoparticles: Synthesis and Characterization. Eur. Polym. J. 2008, 44, 2476-2481.
  •  
  • 17. Khulbe, K. C.; Matsuura, T.; Feng, C. Processing and Applications. In Handbook of Polymers for Pharmaceutical Technologies; Thakur, V. K., Thakur, M. K., Eds; Scrivener Publishing: Beverly, USA, 2015; p 43.
  •  
  • 18. Rezwan, K.; Chen, Q. Z.; Blaker, J. J.; Boccaccini, A. R. Biodegradable and Bioactive Porous Polymer/inorganic Compositescaffolds for Bone Tissue Engineering. Biomater. 2006, 27, 3413-3431.
  •  
  • 19. Wu, D.; Spanou, A.; Diez-Escudero, A.; Persson, C. 3D-printed PLA/HA Composite Structures as Synthetic Trabecular Bone: A Feasibility Study using Fused Deposition Modeling. J. Mech. Behav. Biomed. Mater. 2020, 103608.
  •  
  • 20. Evlen, H.; Erel, G. Polimer Matrisli Nano Takviyeli Biyokompozitlerin Biyoaktivite ve Mikroyapı Uygulamaları. Biomaten 2018 Abstract Booklet; Ankara, Turkey; 2018; p 89.
  •  
  • 21. Buzarovska, A.; Gualandi, C.; Parrilli, A.; Scandola, M. Effect of TiO2 nanoparticle Loading on Poly(L-lactic acid) Porous Scaffolds Fabricated by TIPS. Composites Part B 2015, 81, 189-195.
  •  
  • 22. Li, Y.; Chen, C.; Li, J.; Sun, X. S. Synthesis and Characterization of Bionanocomposites of Poly(lactic acid) and TiO2 Nanowires by in situ Polymerization. Polymer 2011, 2367-2375.
  •  
  • 23. Kodal, M.; Sirin, H.; Ozkoc, G. Effects of Reactive and Nonreactive POSS Types on The Mechanical, Thermal and Morphological Properties of Plasticized Poly (lactic acid). Polym. Eng. Sci. 2014, 54, 264-275.
  •  
  • 24. Callister, W. D.; Rethwisch, D. G. Fundamentals of Material Science and Engineering (An Introduction), 8th ed.; Wiley: New York, USA, 2009.
  •  
  • 25. Kawakami, K. Pharmaceutical Applications of Thermal Analysis. In Handbook of Thermal Analysis and Calorimetry; Vyazovkin, S., Koga, N., Schick, C., Eds.; Elsevier: Amsterdam, Netherland, 2018, pp 613-641.
  •  
  • 26. Salerno, A.; Fernández-Gutiérrez, M.; San Román, J.; Domingo, C. R. Macroporous and Nanometre Scale Fibrous PLA and PLA-HA Composite Scaffolds Fabricated by a Bio Safe Strategy. Royal Soc. of Chem. 2014, 4, 61491-61502.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(4): 491-500

    Published online Jul 25, 2021

  • 10.7317/pk.2021.45.4.491
  • Received on Oct 7, 2020
  • Revised on Jan 21, 2021
  • Accepted on Feb 24, 2021

Correspondence to

  • Hatice Evlen and Gülçin Erel
  • Industrial Design Engineering Department, Technology Faculty, Karabuk University, 78100, Turkey
    *Industrial Design Engineering Department, Graduate Education Institute, Karabuk University, 78100, Turkey

  • E-mail: hakgul@karabuk.edu.tr, gulcin.erel@gazi.edu.tr