Article
  • Study on the Physical Properties of Polypropylene/Silane Treated Cellulose Nano Fiber (Si-CNF) Composites and Hydrophobization of Si-CNF
  • Seok Hwan Han, Dong Won Shin, Gwang Il Kim, and Youn Cheol Kim

  • Major in Polymer Science and Engineering, Kongju National University, 1223-24 Cheonan-daero, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31080, Korea

  • 실란 처리된 셀룰로오스 나노 섬유(Si-CNF)의 소수화 및 폴리프로필렌/Si-CNF 복합체의 물성에 대한 연구
  • 한석환 · 신동원 · 김광일· 김연철

  • 공주대학교 고분자공학전공

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Lee, K. D.; Lee, W. K. A Development Trend of Bio-plastics in Automotive. Auto J. 2009, 31, 44-51.
  •  
  • 2. Kim, K. H.; Cho, D.; Kim, J. H. Fabrication and Properties of Natural Fiber-reinforced Waste Wool/polypropylene Composites (NFRP). J. Adhes. Interface. 2008, 9, 16-23.
  •  
  • 3. Rozman, H. D.; Shannon-Ong, S. H.; Azizah, A. B.; Tay, G. S. Preliminary Study of Non-woven Composite: Effect of Needle Punching and Kenaf Fiber Loadings on Non-woven Thermoplastic Composites Prepared from Kenaf and Polypropylene Fiber. J. Polym. Environ. 2013, 21, 1032-1039.
  •  
  • 4. Ashori, A. Wood–plastic Composites as Promising Green-composites for Automotive Industries!. Bioresour. Technol. 2008, 99, 4661-4667.
  •  
  • 5. Ku, S. G.; Kim, Y. S.; Hong, Y. E.; Kim, D. W.; Kim, K. S.; Kim, Y. C. Study on Physical Properties of Maleic anhydride Grafted Polypropylene (PP)/Kenaf Fiber (KF) Composites. Appl. Chem. Eng. 2017, 28, 73-79.
  •  
  • 6. Lee, B. H.; Kim, J. J.; Jeong, D. S.; Kim, C. W.; Kim, K. S.; Kim, Y. C. Effects of Silane Modification of Bamboo Fiber (BF) on the Physical Properties of PP/Ethylene-Octene Rubber/BF Composites. Polym. Korea. 2017, 41, 592-598.
  •  
  • 7. Phanthong, P.; Reubroycharoen, P.; Hao, X.; Xu, G.; Abudula, A.; Guan, G. Nanocellulose: Extraction and application. Carbon Resour. Convers. 2018, 1, 32-43.
  •  
  • 8. Lee, J.; Lee, Y.; Park, S.; Ha, K. Preparation and Properties of Thiol-ene UV-cured Nanocomposites with Methacrylate-grafted Cellulose Nanocrystals as Fillers. Polym. Korea. 2019, 43, 612-620.
  •  
  • 9. Gardner, D. J.; Oporto, G. S.; Mills, R.; Samir, M. A. S. A. Adhesion and Surface Issues in Cellulose and Nanocellulose. J. Adhes. Sci. Technol. 2008, 22, 545-567.
  •  
  • 10. Peng, Y.; Gardner, D. J.; Han, Y. Drying Cellulose Nanofibrils: in Search of a Suitable Method. Cellulose, 2012, 19, 91-102.
  •  
  • 11. Hiemenz, P. C.; Rajagopalan, R. Principles of Colloid and Surface Science; CRC Press: New York, 1997.
  •  
  • 12. Hunter, R. J. Foundations of Colloid Science; Oxford University Press: Oxford, 2001.
  •  
  • 13. Bulota, M.; Kreitsmann, K.; Hughes, M.; Paltakari, J. Acetylated Microfibrillated Cellulose as a Toughening Agent in Poly(Lactic Acid). J. Appl. Polym. Sci. 2012, 126(S1), E449-E458.
  •  
  • 14. Navarro, J. R.; Bergström, L. Labelling of N-hydroxysuccinimide-modified Rhodamine B on Cellulose Nanofibrils by the Amidation Reaction. Rsc Adv. 2014, 4, 60757-60761.
  •  
  • 15. Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-composites–A Review. Biotechnol. Rep. 2019, 21, e00316.
  •  
  • 16. Salon, M. C. B.; Abdelmouleh, M.; Boufi, S.; Belgacem, M. N.; Gandini, A. Silane Adsorption onto Cellulose Fibers: Hydrolysis and Condensation Reactions. J. Colloid Interface Sci. 2005, 289, 249-261.
  •  
  • 17. Xie, Y.; Hill, C. A.; Xiao, Z.; Militz, H.; Mai, C. Silane Coupling Agents Used for Natural Fiber/Polymer. Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806-819.
  •  
  • 18. Abdelmouleh, M.; Boufi, S.; Belgacem, M. N.; Duarte, A. P.; Salah, A. B.; Gandini, A. Modification of Cellulosic Fibres with Functionalised Silanes: Development of Surface Properties. Int. J. Adhes. Adhes. 2004, 24, 43-54.
  •  
  • 19. Ku, S. G.; Kim, Y. S.; Kim, D. W.; Kim, K. S.; Kim, Y. C. Effect of Silane Coupling Agent on Physical Properties of Polypropylene (PP)/Kenaf Fiber (KF) Felt Composite. Appl. Chem. Eng. 2018, 29, 37-42.
  •  
  • 20. Mendez, J. A.; Vilaseca, F.; Pelach, M. A.; Lopez, J. P.; Barbera, L.; Turon, X.; Girones, J.; Mutje, P. Evaluation of the Reinforcing Effect of Ground Wood Pulp in the Preparation of Polypropylene‐based Composites Coupled with Maleic Anhydride Grafted Polypropylene. J. Appl. Polym. Sci. 2007, 105, 3588-3596.
  •  
  • 21. Chang, F.; Kwon, J. H.; Kim, N. H.; Endo, T.; Lee, S. H. Effect of Hot-compressed Water Treatment of Bamboo Fiber on the Properties of Polypropylene/bamboo Fiber Composite. Bioresources, 2015, 10, 1366-1377.
  •  
  • 22. Demir, H.; Atikler, U.; Balköse, D.; Tıhmınlıoğlu, F. The Effect of Fiber Surface Treatments on the Tensile and Water Sorption Properties of Polypropylene–luffa Fiber Composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 447-456.
  •  
  • 23. Hu, S. F.; Zhao, M.; Zhang, C.; Wen, C. Interface Reaction and Molecule Recognition Among Wood Flour, Amino Silane Coupling Agent and POE-g-MAH compatibilizer. Polym. Plast. Technol. Eng. 2011, 50, 47-51.
  •  
  • 24. Park, H. J.; Yook, S. Y.; Park, S. Y.; Youn, H. J. Hydrophobization of Cellulose Nanofibrils by Silylation under an Aqueous System. J. of Korea TAPPI. 2018, 50, 72-77.
  •  
  • 25. Jonoobi, M.; Harun, J.; Mathew, A. P.; Oksman, K. Mechanical Properties of Cellulose Nanofiber (CNF) Reinforced Polylactic Acid (PLA) Prepared by Twin Screw Extrusion. Compos. Sci. Technol. 2010, 70, 1742-1747.
  •  
  • 26. Gong, G.; Pyo, J.; Mathew, A. P.; Oksman, K. Tensile Behavior, Morphology and Viscoelastic Analysis of Cellulose Nanofiber-reinforced (CNF) Polyvinyl Acetate (PVAc). Compos. Part A Appl. Sci. Manuf. 2011, 42, 1275-1282.
  •  
  • 27. Anderson, R. A. Water Absorption and Solubility and Amylograph Characteristics of Roll-cooked Small Grain Products. Cereal Chem. 1982, 59, 265-269.
  •  
  • 28. Andresen, M.; Johansson, L. S.; Tanem, B. S.; Stenius, P. Properties and Characterization of Hydrophobized Microfibrillated Cellulose. Cellulose 2006, 13, 665-677.
  •  
  • 29. Li, H.; Wang, R.; Hu, H.; Liu, W. Surface Modification of Self-healing Poly(Urea-formaldehyde) Microcapsules Using Silane-coupling Agent. Appl. Surf. Sci. 2008, 255, 1894-1900.
  •  
  • 30. Abdelmouleh, M.; Boufi, S.; Belgacem, M. N.; Duarte, A. P.; Salah, A. B.; Gandini, A. Modification of Cellulosic Fibres with Functionalised Silanes: Development of Surface Properties. Int. J. Adhes. Adhes. 2004, 24, 43-54.
  •  
  • 31. Bahadur, A.; Shoaib, M.; Saeed, A.; Iqbal, S. FTIR Spectroscopic and Thermal Study of Waterborne Polyurethane-acrylate Leather Coatings Using Tartaric Acid as an Ionomer. e-Polymers 1997, 16, 463-474.
  •  
  • 32. Ryu, G. H.; Mulvaney, S. J. Analysis of Physical Properties and Mechanical Energy Input of Cornmeal Extrudates Fortified with Dairy Products by Carbon Dioxide Injection. Korean J. Food Sci. Technol. 1997, 29, 947-954.
  •  
  • 33. Cho, S. C.; Kang, B. S. Determination of the Optimal Mixture Ratio for Extrudates of Job's-tear and Wheat Flour by Mixture Design Analysis. Korean J. Food Sci. Technol. 2013, 45, 473-477.
  •  
  • 34. Bengtsson, M.; Le Baillif, M.; Oksman, K. Extrusion and Mechanical Properties of Highly Filled Cellulose Fibre–polypropylene. Compos. Part A Appl. Sci. Manuf. 2007, 38, 1922-1931.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2018 Impact Factor : 0.500
  • Indexed in SCIE

This Article

  • 2021; 45(2): 261-266

    Published online Mar 25, 2021

  • 10.7317/pk.2021.45.2.261
  • Received on Oct 27, 2020
  • Revised on Dec 11, 2020
  • Accepted on Dec 14, 2020

Correspondence to

  • Youn Cheol Kim
  • Major in Polymer Science and Engineering, Kongju National University, 1223-24 Cheonan-daero, Seobuk-gu, Cheonan-si, Chungcheongnam-do 31080, Korea

  • E-mail: younkim@kongju.ac.kr