Article
  • Electromagnetic Interference Shielding Effectiveness and Thermal Properties of Silicone Rubber Composites Filled with Ferric Oxides
  • Sosan Hwang, Hyeon Woo Jeong, Yongha Kim, Sung Hoon Jin, Yingjie Qian, and Sang Eun Shim

  • Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Korea

  • 산화철이첨가된실리콘고무복합체의전자파차폐성능과열적특성
  • 황소산 · 정현우 · 김용하 · 진성훈 · 천영걸 · 심상은

  • 인하대학교 화학 및 화학공학 융합 대학원, 스마트 에너지 소재 및 공정 교육연구단

  • Reproduction, stored in a retrieval system, or transmitted in any form of any part of this publication is permitted only by written permission from the Polymer Society of Korea.

References
  • 1. Watts, P. C. P.; Hsu, W.-K.; Barnes, A.; Chambers, B. High Permittivity from Defective Multiwalled Carbon Nanotubes in the X‐band. Adv. Mater. 2003, 15, 600-603.
  •  
  • 2. Dang, Z.; Zhou, T.; Yao, S.; Yuan, J.; Zha, J.; Song, H.; Li, J.; Chen, Q.; Yang, W.; Bai, J. Advanced Calcium Copper Titanate/Polyimide Functional Hybrid Films with High Dielectric Permittivity. Adv. Mater. 2009, 21, 2077-2082.
  •  
  • 3. Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H. Lightweight and Flexible Graphene Foam Composites for High‐Performance Electromagnetic Interference Shielding. Adv. Mater. 2013, 25, 1296-1300.
  •  
  • 4. Novoselov, L.; Novoselov, K. S. ; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666-669.
  •  
  • 5. Chung, D. Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon 2001, 39, 279-285.
  •  
  • 6. Colaneri, N. F.; Shacklette, L. W. EMI Shielding Measurements of Conductive Polymer Blends. IEEE Trans. Instrum. Meas. 1992, 41, 291-297.
  •  
  • 7. Geetha, S.; Satheesh Kumar, K.; Rao, C. R.; Vijayan, M.; Trivedi, D. EMI Shielding: Methods and Materials—A Review. J. Appl. Polym. Sci. 2009, 112, 2073-2086.
  •  
  • 8. Chu, C. W.; Ouyang, J.; Tseng, J.; Yang, Y. Organic Donor–Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices. Adv. Mater. 2005, 17, 1440-1443.
  •  
  • 9. Xiang, C.; Pan, Y.; Liu, X.; Sun, X.; Shi, X.; Guo, J. Microwave Attenuation of Multiwalled Carbon Nanotube-fused Silica Composites. Appl. Phys. Lett. 2005, 87, 123103.
  •  
  • 10. Joo, J.; Epstein, A. Electromagnetic Radiation Shielding by Intrinsically Conducting Polymers. Appl. Phys. Lett. 1994, 65, 2278.
  •  
  • 11. Joo, J.; Lee, C. High Frequency Electromagnetic Interference Shielding Response of Mixtures and Multilayer Films Based on Conducting Polymers. J. Appl. Phys. 2000, 88, 513.
  •  
  • 12. Hamdani, S.; Longuet, C.; Perrin, D.; Lopez-Cuesta, J.; Ganachaud, F. Flame Retardancy of Silicone-based Materials. Polym. Degrad. Stabil. 2009, 94, 465-495.
  •  
  • 13. Zhuo, J.; Dong, J.; Jiao, C.; Chen, X. Synergistic Effects between Red Phosphorus and Alumina Trihydrate in Flame Retardant Silicone Rubber Composites. Plast. Rubber Compos. 2003, 42, 239-243.
  •  
  • 14. Lemos, L. R.; Da Rocha, S. H. F. S.; De Castro, L. F. A. Reduction Disintegration Mechanism of Cold Briquettes from Blast Furnace Dust and Sludge. J. Mater. Res. Technol. 2015, 4, 278-282.
  •  
  • 15. Lanzerstorfer, C. Characterization of Dust from Blast Furnace Cast House De-dusting. Environ. Technol. 2017, 38, 2440-2446.
  •  
  • 16. Kaneko, K.; Katsura, T. The Formation of Mg-bearing Ferrite by the Air Oxidation of Aqueous Suspensions. Bull. Chem. Soc. Jpn. 1979, 52, 747-752.
  •  
  • 17. Drobíková, K.; Plachá, D.; Motyka, O.; Gabor, R.; Mamulová Kutláková, K.; Vallová, S.; Seidlerová, J. Recycling of Blast Furnace Sludge by Briquetting with Starch Binder: Waste Gas from Thermal Treatment Utilizable as a Fuel. Waste Manage. 2016, 48, 471-477.
  •  
  • 18. Zhang, G.; Sun, Y.; Xu, Y. Review of Briquette Binders and Briquetting Mechanism. Renew. Sustain. Energy Rev. 2018, 82, 477-487.
  •  
  • 19. Wang, W. Xu, G.; Yin, P. Designed Fabrication of Reduced Graphene Oxides/Ni Hybrids for Effective Electromagnetic Absorption and Shielding. Carbon 2018, 139, 759-767.
  •  
  • 20. Zhan, Y.; Wang, J.; Zhang, K.; Li, Y.; Meng, Y.; Yan, N.; Wei, W.; Peng, F.; Xia, H. Fabrication of a Flexible Electromagnetic Interference Shielding Fe3O4@reduced Graphene Oxide/natural Rubber Composite with Segregated Network. Chem. Eng. J. 2018, 344, 184-193.
  •  
  • 21. Yan, J.; Huang, Y.; Chen, X.; Wei, C. Conducting Polymers-NiFe2O4 Coated on Reduced Graphene Oxide Sheets as Electromagnetic (EM) Wave Absorption Materials. Synth. Met. 2016, 221, 291-298.
  •  
  • 22. Tuz, V. R.; Novitsky, D. V.; Mladyonov, P. L.; Prosvirnin, S. L.; Novitsky, A. V. Nonlinear Interaction of Two Trapped-mode Resonances in a Bilayer Fish-scale Metamaterial. JOSA B 2014, 31, 2095-2103.
  •  
  • 23. Chen, X.; Grzegorczyk, T. M.; Wu, B.; Pacheco, J. J.; Kong, J. A. Robust Method to Retrieve the Constitutive Effective Parameters of Metamaterials. Phys. Rev. E 2004, 70, 016608.
  •  
  • 24. Nicolson, A.; Ross, G. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Trans. Instrum. Meas. 1970, 19, 377-382.
  •  
  • 25. Weir, W. B. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies. Proc. IEEE 1974, 62, 33-36.
  •  
  • 26. Alù, A.; Yaghjian, A. D.; Shore, R. A.; Silveirinha, M. G. Causality Relations in the Homogenization of Metamaterials. Phys. Rev. B 2011, 84, 054305.
  •  
  • 27. De Bellis, G.; Tamburrano, A.; Dinescu, A.; Santarelli, M. L.; Sarto, M. S. Electromagnetic Properties of Composites Containing Graphite Nanoplatelets at Radio Frequency. Carbon 2011, 49, 4291-4300.
  •  
  • 28. Yu, J.; Huang, J.; Wu, C.; Jiang, P. Permittivity, Thermal Conductivity and Thermal Stability of Poly(vinylidene fluoride)/graphene Nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 478-484.
  •  
  • 29. Mallikarjun, K. Thermal Decomposition Kinetics of Ni(II) Chelates of Substituted Chalcones. J. Chem. 2004, 1, 105-109.
  •  
  • 30. Liu, Q.; Cao, B.; Feng, C.; Zhang, W.; Zhu, S.; Zhang, D. Preparation, Structure and Thermal Properties of Polylactide/sepiolite Nanocomposites with and without Organic Modifiers. Compos. Sci. Technol. 2012, 72, 1508-1514.
  •  
  • 31. G. Behnam and N. Ghalichechian, Permittivity and Dielectric Loss Measurement of Paraffin Films for mmW and THz Applications. Proceedings of iWAT 2016, 48.
  •  
  • 32. Xie, A.; Jiang, W.; Wu, F.; Dai, X.; Sun, M.; Wang, Y.; Wang, M. Interfacial Synthesis of Polypyrrole Microparticles for Effective Dissipation of Electromagnetic Waves. J. Appl. Phys. 2015, 118, 204105.
  •  
  • 33. Ren, J.; Yin, J. Y. Cylindrical-water-resonator-based Ultra-broadband Microwave Absorber. Opt. Mater. Express 2018, 8, 2060-2071.
  •  
  • 34. Xiong, H.; Yang, F. Ultra-broadband and Tunable Saline Water-based Absorber in Microwave Regime. Opt. Express 2020, 28, 5306-5316.
  •  
  • 35. Cui, T.; Chao, Y.; Chen, X.; Van Zee, J. Effect of Water on Life Prediction of Liquid Silicone Rubber Seals in Polymer Electrolyte Membrane Fuel Cell. J. Power Sources 2011, 196, 9536-9543
  •  
  • 36. Kim, G. T.; Lee, Y. S.; Ha, K. Effects of Inorganic Fillers on Mechanical Properties of Silicone Rubber, Elastom. Compos. 2019, 54, 142-148
  •  
  • 37. Lee, S. Characteristics of Epoxy Nanocomposites for Outdoor Use with Improved Mechanical Properties. Polym. Korea 2020, 44, 186-191.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2018 Impact Factor : 0.500
  • Indexed in SCIE

This Article

  • 2021; 45(2): 200-209

    Published online Mar 25, 2021

  • 10.7317/pk.2021.45.2.200
  • Received on Sep 16, 2020
  • Revised on Oct 27, 2020
  • Accepted on Nov 2, 2020

Correspondence to

  • Sang Eun Shim
  • Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon 22212, Korea

  • E-mail: seshim@inha.ac.kr