Article
  • Comparing Waste Gypsum with CaCO3 as Filler Towards Developing Low-cost PBAT Composites
  • Tae Woong Kong*, **,# , In Tae Kim*,# , Junho Moon*, Tridib Kumar Sinha*, Dong Ho Kim**, Inseon Kim***, Kwangyong Na***, Kyum Woo Choi****, and Jeong Seok Oh*,†

  • *Department of Materials Engineering and Convergence Technology, ERI, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
    **Space-Aeronautics & Advanced Non-Metal Material Center, Jeonnam Technopark, 1448-345 Goheungman-ro, Goheung 59532, Korea
    ***Namhae chemical corp., 1384 Yeosusandan-ro, Yeosu-si 59618, Korea
    ****JS TECH Co., Ltd, Sacheon Industrial Complex, 158 Oegukgieop-ro, Sanam-Myun, Sacheon 52530, Korea

  • 저비용 PBAT 복합체 제조를 위한 폐석고와 탄산칼슘 충전제 비교 연구
  • 공태웅*, **,# · 김인태*,# · 문준호* · Tridib Kumar Sinha* · 김동호** · 김인선*** · 나광용*** · 최겸우**** · 오정석*,†

  • *경상대학교 나노신소재융합공학과, **전남테크노파크 우주항공 첨단소재센터, ***남해화학, ****제이에스테크

References
  • 1. Schrijvers, D. L.; Leroux, F.; Verney, V.; Patel, M. K. Ex-ante Life Cycle Assessment of Polymer Nanocomposites Using Organo-modified Layered Double Hydroxides for Potential Application in Agricultural Films. Green Chem. 2014, 16, 4969-4984.
  •  
  • 2. Gnanasekaran, D. Green Biopolymers and Their Nanocomposites; Springer: Singapore, 2019; pp 1-27.
  •  
  • 3. Hu, H.; Zhang, R.; Wang, J.; Ying, W. B.; Shi, L.; Yao, C.; Kong, J.; Wang, K.; Zhu, J. A. Mild Method to Prepare High Molecular Weight Poly(Butylene Furandicarboxylate-co-glycolate) Copoly-esters: Effects of the Glycolate Content on Thermal, Mechanical, and Barrier Properties and Biodegradability. Green Chem. 2019, 21, 3013-3022.
  •  
  • 4. Rocha, D. B.; Souza de Carvalho, J.; de Oliveira, S. A.; dos Santos Rosa, D. A New Approach for Flexible PBAT/PLA/CaCO3 Films Into Agriculture. J. Appl. Polym. Sci. 2018, 135, 46660.
  •  
  • 5. Spierling, S.; Knüpffer, E.; Behnsen, H.; Mudersbach, M.; Krieg, H.; Springer, S.; Springer, S.; Albrecht, S.; Herrmann, C.; Endres, H.-J. Bio-based Plastics - A Review of Environmental, Social and Economic Impact Assessments. J. Clean. Prod. 2018, 185, 476-491.
  •  
  • 6. Aung, S. P. S.; Shein, H. H. H.; Aye, K. N.; Nwe, N. Environment-Friendly Biopolymers for Food Packaging: Starch, Protein, and Poly-lactic Acid (PLA). In Bio-based Materials for Food Packaging; Ahmed, S. Ed.; Springer: Singapore, 2018; pp 173-195.
  •  
  • 7. Bajpai, P. K.; Singh, I.; Madaan, J. Development and Characterization of PLA-based Green Composites. Compos. Mater. 2014, 27, 52-81.
  •  
  • 8. Koronis, G.; Silva, A.; Fontul, M. Green Composites: A Review of Adequate Materials for Automotive Applications. Compos. Part B 2013, 44, 120-127.
  •  
  • 9. Zhou, H.; Lawrence, J. G.; Bhaduri, S. B. Fabrication Aspects of PLA-CaP/PLGA-CaP Composites for Orthopedic Applications: A Review. Acta Biomater. 2012, 8, 1999-2016.
  •  
  • 10. Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63-84.
  •  
  • 11. Hamad, K.; Kaseem, M.; Ko, Y. G.; Deri, F. Biodegradable Polymer Blends and Composites: An Overview. Polymer Science Series A 2014, 56, 812-829.
  •  
  • 12. Burgos, N.; Martino, V. P.; Jiménez, A. Characterization and Ageing Study of Poly(Lactic Acid) Films Plasticized with Oligomeric Lactic Acid. Polym. Degrad. Stab. 2013, 98, 651-658.
  •  
  • 13. Osman, M. J.; Ibrahim, N. A.; Yunus, W. M. Z. W. Effect of Modified Clay on the Morphological and Thermal Properties of PLA/PBAT Nanocomposites. Orient. J. Chem. 2017, 33, 3015-3023.
  •  
  • 14. Nofar, M.; Heuzey, M. C.; Carreau, P. J.; Kamal, M. R.; Randall, J. Coalescence in PLA-PBAT Blends under Shear Flow: Effects of Blend Preparation and PLA Molecular Weight. J. Rheol. 2016, 60, 637-648.
  •  
  • 15. Sirisinha, K.; Somboon, W. Melt Characteristics, Mechanical, and Thermal Properties of Blown Film from Modified Blends of Poly(butylene adipate‐co‐terephthalate) and Poly(lactide). J. Appl. Polym. Sci. 2012, 124, 4986-4992.
  •  
  • 16. Kim, T.-J.; Kim, T.-H.; Kim, S.-G.; Seo, K.-H. Structural, Thermal, and Mechanical Properties of PLA/PBAT/MEA Blend. Polym. Korea 2016, 40, 371-379.
  •  
  • 17. Xie, J.; Wang, Z.; Zhao, Q.; Yang, Y.; Xu, J.; Waterhouse, G. I. N.; Zhang, K.; Li, S.; Jin, P.; Jin, G. Scale-Up Fabrication of Biodegradable Poly(butylene adipate-co-terephthalate)/Organophilic-Clay Nanocomposite Films for Potential Packaging Applications. ACS Omega 2018, 3, 1187-1196.
  •  
  • 18. Jiang, L.; Wolcott, M. P.; Zhang, J. Study of Biodegradable Polylactide/Poly(butylene adipate-co-terephthalate) Blends. Bio-macromolecules 2006, 7, 199-207.
  •  
  • 19. França, D. C.; Almeida, T. G.; Abels, G.; Canedo, E. L.; Carvalho, L. H.; Wellen, R. M. R.; Haag, K.; Koschek, K. Tailoring PBAT/PLA/Babassu Films for Suitability of Agriculture Mulch Application. J. Nat. Fibers 2019, 16, 933-943.
  •  
  • 20. Van Breemen, N.; Mulder, J.; Driscoll, C. T. Acidification and Alkalinization of Soils. Plant Soil. 1983, 75, 283-308.
  •  
  • 21. Kara, Ö.; Bolat, İ. Impact of Alkaline Dust Pollution on Soil Microbial Biomass Carbon. Turk. J. Agric. For. 2007, 31, 181-187.
  •  
  • 22. Denev, Y. G.; Denev, G. D.; Popov, A. N. Surface Modification of Phosphogypsum Used as Reinforcing Material in Polyethylene Composites. J. Elastomers Plast. 2009, 41, 119-132.
  •  
  • 23. Gopikrishnan, C. R.; Jose, D.; Datta, A. Electronic Structure, Lattice Energies and Born Exponents for Alkali Halides from First Principles. AIP Adv. 2012, 2, 012131.
  •  
  • 24. Fajans, K. Degrees of Polarity and Mutual Polarization of Ions in the Molecules of Alkali Fluorides, SrO, and BaO. In Structure and Bonding; Jørgensen, C. K., Neilands, J. B., Nyholm, S. R. S., Reinen, D., Williams, R. J. P. Eds.; Springer: Berlin, Germany, 1967; vol 3, pp 88-105.
  •  
  • 25. Shainberg, I.; Sumner, M. E.; Miller, W. P.; Farina, M. P. W.; Pavan, M. A.; Fey, M. V. Use of Gypsum on Soils: A Review. In Advances in Soil Science; Stewart, B. A. Ed.; Springer: NewYork, USA, 1989; pp 1-111.
  •  
  • 26. Neal, J. A.; Mozhdehi, D.; Guan, Z. Enhancing Mechanical Performance of a Covalent Self-Healing Material by Sacrificial Noncovalent Bonds. J. Am. Chem. Soc. 2015, 137, 4846-4850.
  •  
  • 27. Signori, F.; Coltelli, M.-B.; Bronco, S. Thermal Degradation of Poly(lactic acid) (PLA) and Poly(butylene adipate-co-terephthalate) (PBAT) and Their Blends upon Melt Processing. Polym. Degrad. Stab. 2009, 94, 74-82.
  •  
  • 28. Dhole, S. G.; Dake, S. A.; Prajapati, T. A.; Helambe, S. N. Effect of ZnO Filler on Structural and Optical Properties of Polyaniline-ZnO Nanocomposites. Procedia Manuf. 2018, 20, 127-134.
  •  
  • 29. Cho, J.; Jeon, I.; Kim, S. Y.; Lim, S.; Jho, J. Y. Improving Dispersion and Barrier Properties of Polyketone/Graphene Nanoplatelet Composites via Noncovalent Functionalization Using Aminopyrene. ACS Appl. Mater. Interfaces 2017, 9, 27984-27994.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2021; 45(1): 119-128

    Published online Jan 25, 2021

  • 10.7317/pk.2021.45.1.119
  • Received on Aug 31, 2020
  • Revised on Oct 13, 2020
  • Accepted on Oct 13, 2020

Correspondence to

  • Jeong Seok Oh
  • Department of Materials Engineering and Convergence Technology, ERI, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea

  • E-mail: ohjs@gnu.ac.kr