Article
  • Fire Behaviors of Multilayer Latex Foam Coated by Thin Surface Fabric under Bottom Ventilation Conditions
  • Yiming Shen, Kai Zhang*, Dongmei Huang , Chaoyi Wang, Chen Chen, De Li, and Long Shi**,†

  • College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
    *Economic Technology Research Institute of the State Grid in Zhejiang Province, Hangzhou, Zhejiang, 310016, China
    **Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne 3004, Australia

  • 바닥 환기 조건에서 얇은 표면 직물로 코팅된 다층 라텍스 폼의 화재 거동
References
  • 1. Oliveira-Salmazo, L.; Lopez-Gil, A.; Silva-Bellucci, F.; Job, A. E.; Rodriguez-Perez, M. A. Natural Rubber Foams with Anisotropic Cellular Structures: Mechanical Properties and Modeling. Ind. Crop. Prod. 2016, 80, 26-35.
  •  
  • 2. Najib, N. N.; Ariff, Z. M.; Bakar, A. A.; Sipaut, C. S. Correlation between the Acoustic and Dynamic Mechanical Properties of Natural Rubber Foam: Effect of Foaming Temperature. Mater. Des. 2011, 32, 505-511.
  •  
  • 3. Wang, X.; Zhang, L.; Han, Y.; Shi, X.; Wang, W.; Yue, D. New Method for Hydrogenating NBR Latex. J. Appl. Polym. Sci. 2013, 127, 4764-4768.
  •  
  • 4. Abbasi, F.; Agah, A. M.; Mehravar, E. Study on the Effective Process Parameters Influencing Styrene and Acrylonitrile Grafting onto Seeded Polybutadiene Latex. J. Appl. Polym. Sci. 2011, 119, 1752-1761.
  •  
  • 5. Yassene, A. A. M.; Ismail, M. R.; Afify, M. S. Physicomechanical Properties of Irradiated SBR Latex Polymer‐modified Cement Mortar Composites. J. Vinyl Addit. Technol. 2020, 26, 144-154.
  •  
  • 6. Ramasamy, S.; Ismail, H.; Munusamy, Y. Tensile and Morphological Properties of Rice Husk Powder Filled Natural Rubber Latex Foam. Polym.-Plast. Technol. Eng. 2012, 51, 1524-1529.
  •  
  • 7. Fan, H. W.; Chen, Y. L.; Huang, D. M.; Wang, G. Q. Kinetic Analysis of the Thermal Decomposition of Latex Foam according to Thermogravimetric Analysis. Int. J. Polym. Sci. 2016, 2016, 1-7.
  •  
  • 8. Huang, D.; Zhang, M.; Guo, C.; Shi, L.; Lin, P. Experimental Investigations on the Effects of Bottom Ventilation on the Fire Behavior of Natural Rubber Latex Foam. Appl. Therm. Eng. 2018, 133, 201-210.
  •  
  • 9. Huang, D.; Guo, C.; Shi, L. Experimental Investigation on the Morphology of Soot Aggregates from the Burning of Typical Solid and Liquid Fuels. J. Nanopart. Res. 2017, 19, 96.
  •  
  • 10. Yuan, Q.; Huang, D.; Hu, Y.; Shen, L.; Shi, L.; Zhang, M. Comparison of Fire Behaviors of Thermally Thin and Thick Rubber Latex Foam under Bottom Ventilation. Polymers 2019, 11, 88.
  •  
  • 11. Huang, D.; Zhang, M.; Shi, L.; Peng, L.; Yuan, Q.; Wang, S. Fire Behaviors of Single and Laminated Natural Latex Foam. Int. J. Therm. Sci. 2019, 136, 278-286.
  •  
  • 12. Frangi, A.; Fontana, M.; Hugi, E.; Jübstl, R. Experimental Analysis of Cross-laminated Timber Panels in Fire. Fire Saf. J. 2009, 44, 1078-1087.
  •  
  • 13. Fleischmann, C. M. Flammability Tests for Upholstered Furniture and Mattresses. In Flammability Testing of Materials Used in Construction, Transport and Mining; Woodhead Publishing: Cambridge, England, 2006; pp 164-186.
  •  
  • 14. Hirschler, M. M.; Shakir, S. Comparison of the Fire Performance of Various Upholstered Furniture Composite Combinations (Fabric/Foam) in Two Rate of Heat Release Calorimeters: Cone and Ohio State University Instruments. J. Fire Sci. 1991, 9, 223-248.
  •  
  • 15. Gallagher, J. A. Interliner Effect on the Fire Performance of Upholstery Materials. J. Fire Sci. 1993, 11, 87-105.
  •  
  • 16. Valencia, L. B.; Rogaume, T.; Guillaume, E. New method for simulating the kinetic of toxic gases production of upholstered furniture fire. In Fire and Materials, Proceedings of the Eleventh International Conference, San Francisco, CA, 26-28 January, 2009, Interscience Communications Limited, London, England, 2009, pp. 685-695.
  •  
  • 17. Zou, G. W.; Huo, Y.; Chow, W. K.; Chow, C. L. Modelling of Heat Release Rate in Upholstered Furniture Fire. Fire Mater. 2018, 42, 374-385.
  •  
  • 18. Zammarano, M.; Matko, S.; Pitts, W. M.; Fox, D. M.; Davis, R. D. Towards a Reference Polyurethane Foam and Bench Scale Test for Assessing Smoldering in Upholstered Furniture. Polym. Degrad. Stabil. 2014, 106, 97-107.
  •  
  • 19. Damant, G. H. Recent United States Developments in Tests and Materials for the Flammability of Furnishings. J. Text. Inst. 1994, 85, 505-525.
  •  
  • 20. Martini, P.; Spearpoint, M. J.; Ingham, P. E. Low-cost Wool-based Fire Blocking Inter-liners for Upholstered Furniture. Fire Saf. J. 2010, 45, 238-248.
  •  
  • 21. Ma, X.; Tu, R.; Ding, C.; Zeng, Y.; Wang, Y.; Fang, T. Thermal and fire Risk Analysis of Low Pressure on Building Energy Conservation Material Flexible Polyurethane with Various Inclined Facade Constructions. Constr. Build. Mater. 2018, 167, 449-456.
  •  
  • 22. Garrido, M. A.; Gerecke, A. C.; Heeb, N.; Font, R.; Conesa, J. A. Isocyanate Emissions from Pyrolysis of Mattresses Containing Polyurethane Foam. Chemosphere 2017, 168, 667-675.
  •  
  • 23. Krämer, R. H.; Zammarano, M.; Linteris, G. T.; Gedde, U. W.; Gilman, J. W. Heat Release and Structural Collapse of Flexible Polyurethane Foam. Polym. Degrad. Stabil. 2010, 95, 1115-1122.
  •  
  • 24. Lefebvre, J.; Bastin, B.; Le Bras, M.; Duquesne, S.; Paleja, R.; Delobel, R. Thermal Stability and Fire Properties of Conventional Flexible Polyurethane Foam Formulations. Polym. Degrad. Stabil. 2005, 88, 28-34.
  •  
  • 25. Fragiacomo, M.; Menis, A.; Clemente, I.; Bochicchio, G.; Ceccotti, A. Fire Resistance of Cross-Laminated Timber Panels Loaded Out of Plane. J. Struct. Eng. 2013, 139, 04013018.
  •  
  • 26. Henek, V.; Venkrbec, V.; Novotný, M. Fire Resistance of Large-Scale Cross-Laminated Timber Panels. IOP Conference Series: Earth Environ. Sci. 2017, 95, 062004.
  •  
  • 27. Wang, Y.; Zhang, J.; Mei, F.; Liao, J.; Li, W. Experimental and Numerical Analysis on Fire Behaviour of Loaded Cross-laminated Timber Panels. Adv. Struct. Eng. 2020, 23, 22-36.
  •  
  • 28. Hu, Y.; Ma, J.; Huang, D.; Yuan, Q.; Wang, C.; Shen, Y. Combustion Characteristics and Fire Risk of Flammable Fabric-latex Structure. Fire Sci. Technol. 2019, 38, 764-767.
  •  
  • 29. Zhang, M.; Huang, D.; Yuan, Q.; Wang, S. Flame Spread Characteristics of Latex Foam at Different Ignition Positions. Chin. J. Enprocess. Eng. 2018, 18, 1029-1036.
  •  
  • 30. Guo, C.; Huang, D.; Zhang, M.; Zhao, Y. Effect of Ignition Position on Flame Spread of Natural Rubber Latex Foam. CIESC J. 2017, 68, 3623-3630.
  •  
  • 31. Wang, S.; Huang, D.; Guo, C.; Yuan, Q.; Chen, Y.; Lin, P.; Shen, L.; Duan, P. Bottom fire Behaviour of Thermally Thick Natural Rubber Latex Foam. E-Polymers 2019, 19, 9-14.
  •  
  • 32. Huang, D.; Hu, Y.; Yu, Y.; Yuan, Q.; Wang, S.; Shen, L.; Shi, L. Influences of Surface Material on the Fire Behaviors of Two-layer Combustibles under Autoignition Conditions. J. Hazard. Mater. 2019, 369, 539-549.
  •  
  • 33. Yan, W.; Shen, Y.; An, W.; Jiang, L.; Zhou, Y.; Sun, J. Experimental Study on the Width and Pressure Effect on the Horizontal Flame Spread of Insulation Material. Int. J. Therm. Sci. 2017, 114, 114-122.
  •  
  • 34. An, W.; Sun, J.; Liew, K. M.; Zhu, G. Effects of Building Concave Structure on Flame Spread Over Extruded Polystyrene Thermal Insulation Material. Appl. Therm. Eng. 2017, 121, 802-809.
  •  
  • 35. Huang, X.; Link, S.; Rodriguez, A.; Thomsen, M.; Olson, S.; Ferkul, P.; Fernandez-Pello, C. Transition from Opposed Flame Spread to Fuel Regression and Blow Off: Effect of Flow, Atmosphere, and Microgravity. Proc. Combust. Inst. 2019, 37, 4117-4126.
  •  
  • 36. Kuang-Chung, T.; Drysdale, D. Using Cone Calorimeter Data for the Prediction of Fire Hazard. Fire Saf. J. 2002, 37, 697-706.
  •  
  • 37. Li, M.; Wang, C.; Yang, S.; Zhang, J. Precursor Flame Characteristics of Flame Spread over Aviation Fuel. Appl. Therm. Eng. 2017, 117, 178-184.
  •  
  • 38. Zhou, Y.; Xiao, H.; Yan, W.; An, W.; Jiang, L.; Sun, J. Horizontal Flame Spread Characteristics of Rigid Polyurethane and Molded Polystyrene Foams under Externally Applied Radiation at Two Different Altitudes. Fire Technol. 2015, 51, 1195-1216.
  •  
  • 39. Shi, L.; Chew, M.; Novozhilov, V.; Joseph, P. Modeling the Pyrolysis and Combustion Behaviors of Non-Charring and Intumescent-Protected Polymers Using “FiresCone.” Polymers 2015, 7, 1979-1997.
  •  
  • 40. Zhang, Y.; Huang, X.; Wang, Q.; Ji, J.; Sun, J.; Yin, Y. Experimental Study on the Characteristics of Horizontal Flame Spread Over XPS Surface on Plateau. J. Hazard. Mater. 2011, 189, 34-39.
  •  
  • 41. Zhao, L.; Cai, P.; Jia, Z.; Ling, N. The Calculating of Metal Fiber Woven Fabric Tightness. Melli. Chin. 2014, 42, 54-55.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2018 Impact Factor : 0.500
  • Indexed in SCIE

This Article

  • 2021; 45(1): 89-100

    Published online Jan 25, 2021

  • 10.7317/pk.2021.45.1.89
  • Received on Aug 2, 2020
  • Revised on Oct 9, 2020
  • Accepted on Oct 25, 2020

Correspondence to

  • Dongmei Huang, Long Shi**
  • College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
    **Civil and Infrastructure Engineering, School of Engineering, RMIT University, Melbourne 3004, Australia

  • E-mail: dmhuang@cjlu.edu.cn, long.shi@rmit.ed.au