Article
  • Toughness Enhancement of Poly(vinyl Chloride) by the Addition of Graphene Oxide-g-Poly(ε-caprolactone)
  • Pilrok Oh, Yong Hwan Seo, and Young Ho Kim

  • Department of Organic Materials and Fiber Engineering, Soongsil University, Dongjak-gu, Seoul 06978, Korea

  • 산화 그래핀-g-폴리(ε-카프로락톤) 첨가에 의한 폴리염화비닐의 인성 향상
  • 오필록 · 서용환 · 김영호

  • 숭실대학교 유기신소재·파이버공학과

References
  • 1. Wypych, G. PVC Degradation and Stabilization; ChemTec Publishing: Toronto, Canada, 2015; pp 1-2.
  •  
  • 2. Matthews, G. The Institute of Materials, in PVC: Production, Properties and Uses; CRC Press: London, UK, 1997; pp 87-88.
  •  
  • 3. Wang, G.; Wang, L.; Zu, M.; Chang. Z. Reinforcement and Toughening of Poly(vinyl chloride) with Poly(caprolactone) Grafted Carbon Nanotubes. Compos. Part A 2009, 40, 1476-1481.
  •  
  • 4. Wang, G.; Qu, Z.; Liu, L.; Shi, Q.; Guo, J. Study of SMA Graft Modified MWNT/PVC Composite Materials. Mater. Sci. Eng. A 2008, 472, 136-139.
  •  
  • 5. Zhu, A.; Cai, A.; Zhou, W.; Shi, Z. Effect of Flexibility of Grafted Polymer on the Morphology and Property of Nanosilica/PVC Composites. Appl. Surf. Sci. 2008, 254, 3745-3752.
  •  
  • 6. Chen, C.-H.; Li, H.-C.; Teng, C.-C.; Yang, C.-H. Fusion, Electrical Conductivity, Thermal, and Mechanical Properties of Rigid Poly(vinyl chloride) (PVC)/Carbon Black (CB) Composites. J. Appl. Polym. Sci. 2006, 99, 2167-2173.
  •  
  • 7. Tian, M.; Chen, G.; Guo, S. Effect of High-Energy Vibromilling on Interfacial Interaction and Mechanical Properties of PVC/Nano-CaCO3 Composites. Macromol. Mater. Eng. 2005, 290, 927-932.
  •  
  • 8. Wang, D.; Parlow, D.; Yao, Q.; Wilkie, C. A. Melt Blending Preparation of PVC-sodium Clay Nanocomposites. J. Vinyl Add. Technol. 2002, 8, 139-150.
  •  
  • 9. Gonçalves, G.; Marques, P. A. A. P.; Barros-Timmons, A.; Bdkin, I.; Singh, M. K.; Emami, N.; Grácio, J. Graphene Oxide Modified with PMMA via ATRP as a Reinforcement Filler. J. Mater. Chem. 2010, 20, 9927-9934.
  •  
  • 10. Yuan, M.; Chen, Y.; Yuan, M.; Li, H.; Xia, X.; Xiong, C. Functionalization of Graphene Oxide with Low Molecular Weight Poly(Lactic Acid). Polymers 2018, 10, 177.
  •  
  • 11. Chiu, F.; Min, K. Miscibility, Morphology and Tensile Properties of Vinyl Chloride Polymer and Poly(ε-caprolactone) Blends. Polym. Int. 2000, 49, 223-234.
  •  
  • 12. Kalousková, R.; Fartáková, H.; Malinová, L.; Brožek, J. A New Strategy for Plasticizing and Stabilization of PVC Mixtures. J. Appl. Polym. Sci. 2014, 131, 41066,
  •  
  • 13. Oh, P.; Lee, H. M.; Kim, Y. H. Synthesis and Characterization of Graphen Oxide-g-poly(ε-caprolactone). Polym. Korea 2020, 44, 641-651.
  •  
  • 14. Talyzin, A. V.; Mercier, G.; Klechikov, A.; Hedenström, M.; Johnels, D.; Wei, D.; Cotton, D.; Opitz, A.; Moons, E. Brodie vs Hummers Graphite Oxides for Preparation of Multi-layered Materials. Carbon 2017, 115, 430-440.
  •  
  • 15. Hontoria-Lucas, C.; López-Peinado, A. J.; López-González, J. de D.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M. Study of Oxygen-containing Groups in a Series of Graphite Oxides: Physical and Chemical Characterization. Carbon, 1995, 33, 1585-1592.
  •  
  • 16. Si, Y.; Samulski, E. T. Synthesis of Water Soluble Graphene. Nano Lett. 2008, 8, 1679-1682.
  •  
  • 17. Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558-1565.
  •  
  • 18. Roghani-Mamaqani, H. Surface-initiated ATRP of Styrene from Epoxy Groups of Graphene Nanolayers: Twofold Polystyrene Chains and Various Graft Densities. RSC Adv. 2015, 5, 53357-53368.
  •  
  • 19. Wang, D.; Wilkie, C. A. Preparation of PVC-clay Nanocomposites by Solution Blending. J. Vinyl Add. Technol. 2002, 8, 238-245.
  •  
  • 20. Guo, Y.; He, S.; Yang, K.; Xue, Y.; Zuo, X.; Yu, Y.; Liu, Y.; Chang, C.; Rafailovich, M. H. Enhancing the Mechanical Properties of Biodegradable Polymer Blends Using Tubular Nanoparticle Stitching of the Interfaces. ACS Appl. Mater. Interf. 2016, 8, 17565-17573.
  •  
  • 21. Cheng, H. K. F.; Sahoo, N. G.; Tan, Y. P.; Pan, Y.; Bao, H.; Li, L.; Chan, S. H.; Zhao, J. Poly(vinyl alcohol) Nanocomposites Filled with Poly(vinyl alcohol)-Grafted Graphene Oxide. ACS Appl. Mater. Interf. 2012, 4, 2387-2394.
  •  
  • 22. Hezma, A. M.; Elashmawi, I. S.; Rajeh, A.; Kamal, M. Change Spectroscopic, Thermal and Mechanical Studies of PU/PVC Blends. Phys. B: Condens. Matter 2016, 495, 4-10.
  •  
  • 23. Ramesh, S.; Leen, K. H.; Kumutha, K.; Arof, A. K. FTIR Studies of PVC/PMMA Blend Based Polymer Electrolytes. Spectrochim. Acta A 2007, 66, 1237-1242.
  •  
  • 24. Altenhofen da Silva, M.; Adeodato Vieira, M. G.; Gomes Maçumoto, A. C.; Beppu, M. M. Polyvinylchloride (PVC) and Natural Rubber Films Plasticized with a Natural Polymeric Plasticizer Obtained Through Polyesterification of Rice Fatty Acid. Polym. Test. 2011, 30, 478-484.
  •  
  • 25. Lindström, A.; Hakkarainen, M. Miscibility and Surface Segregation in PVC/Polyester Blends—The Influence of Chain Architecture and Composition. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 1552-1563.
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2018 Impact Factor : 0.500
  • Indexed in SCIE

This Article

  • 2021; 45(1): 39-49

    Published online Jan 25, 2021

  • 10.7317/pk.2021.45.1.39
  • Received on Jul 7, 2020
  • Revised on Aug 31, 2020
  • Accepted on Sep 4, 2020

Correspondence to

  • Young Ho Kim
  • Department of Organic Materials and Fiber Engineering, Soongsil University, Dongjak-gu, Seoul 06978, Korea

  • E-mail: ssyhkim@ssu.ac.kr