Due to the polar characteristics of silica compared to carbon black, the degree of silica dispersion, which affects the mechanical properties of rubber compounds, is an important issue. Wolff first introduced the in-rubber structure of particles (αF) to express the structure development in the compounds; however, with the introduction of bifunctional silanes, his theory could not explain the 3-dimensional network structure of the compounds. Later his theory was expanded to express the composite interaction parameter (in-rubber structure of the compound) (αC), which included Wolff's filler-filler interaction parameter (αF), however, there was no reported experimental result proving the theory. This research first experimentally expressed the in-rubber structure of the compound αC (= αF + αFP(filler-silane-rubber interaction parameter) + αP (rubber-rubber interaction parameter)) upon mono- and bifunctional silane treated silica filled natural rubber (NR) compounds. Using different structure silanes, i.e. PTES, OTES, TESPD, and TESPT, the αC value of each compound was measured and calculated. The αC value of TESPT treated silica filled compound was 1.64, which composed of αF (0.99), αFP (0.31), and αP (0.34).
극성을 띠고있어 응집되는 성향이 카본블랙에 비해 강한 실리카의 분산도는 고무 복합소재의 물성을 좌우하는 중요한 요소이다. Wolff는 입자간 상호계수(αF)를 도입하여 충전제간의 구조발달을 최초로 표현하였다. 하지만, 양기능성 실란의 도입에 따라 형성되는 3차원 구조발달은 표현할 수 없었다. 후에 이를 보완하기 위하여 Wolff의 표현은 복합소재 내 αF를 포함하는 구조발달 상호계수 αC로 확장되어 표현되었지만, 실험적으로 이 표현을 증명한 연구는 없었다. 이 논문은 구조발달 상호계수인 αC를 αF(실리카-실리카간 구조발달 상호계수), αFP(실리카-실란-고무간 구조발달 상호계수), αP(고무-고무간 구조발달 상호계수)로 고려하여 단기능성 및 양기능성 실란으로 처리된 실리카가 함유된 복합소재를 실험에 의해 최초로 표현하였다. 구조가 다른 실란들(PTES, OTES, TESPD, TESPT)을 이용하여 구조발달 상호계수 αC를 구성하는 αF, αFP, αP의 수치들을 측정하고 계산하였다. TESPT가 첨가된 복합소재의 αC의 값은 1.64이며, 이를 구성하고 있는 αF, αFP, αP는 각각 0.99, 0.31, 0.34로 나타났다.
Keywords: in-rubber structure of the compound (αC); silica; silane; Wolff's theory; natural rubber (NR).