H-shaped amphiphilic pentablock copolymers (PSt)2-b-PCL-b-PEO-b-PCL-b-(PSt)2 was synthesized via chemoenzymatic method by combining enzyme-catalyzed ring-opening polymerization (eROP) of ε-caprolactone (ε-CL) and atom transfer radical polymerization (ATRP) of styrene. By this process, we obtained copolymers with controlled molecular weight and low polydispersity. The structure and composition of the obtained copolymers were characterized
by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC) and infrared spectroscopy analysis (IR). The crystallization behavior of the copolymers was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The crystallization behavior of the H-shaped block copolymers demonstrated a PCL dominate crystallization. The self-assembly behavior of the copolymers was investigated in aqueous media. The hydrodynamic
diameters of the copolymer micelles in aqueous solution were measured by dynamic light scattering (DLS). The morphology of the copolymer micelles was observed by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The hydrodynamic diameters of spherical micelles declined gradually with the increase of the hydrophobic chain lengths of the copolymers. The critical micelle concentration (CMC) values were determined from fluorescence
emission, and it was found that the CMCs decreased with an increase of PSt hydrophobic block lengths.
Keywords: atom transfer radical polymerization (ATRP); enzymatic ring-opening polymerization (eROP); amphiphilic block copolymer.