반응기 혼합법에 의한 폴리올레핀/2D-나노시트 나노복합체 제조; 마스터배치를 이용한 폴리에틸렌 나노복합체

박준형 · 이동은**◎ · 윤근병*◎

경북대학교 고분자공학과, *경북대학과 건축공학부 (2020년 6월 26일 접수, 2020년 7월 28일 수정, 2020년 7월 28일 채택)

Preparation of Polyolefin/2D-nanosheet Nanocomposites via Reactor Mixing; Polyethylene Composites Using Masterbatch

Jun Hyung Park, Dong Eun Lee^{*,†0}, and Keun-Byoung Yoon^{†0}

Department of Polymer Science & Engineering, Kyungpook National University, Daegu 41566, Korea *School of Architecture & Civil and Architectural Engineering, Kyungpook National University, Daegu 41566, Korea (Received June 26, 2020; Revised July 28, 2020; Accepted July 28, 2020)

초록: 옥타데실아민(octadecylamine, ODA)으로 개질한 MoS₂와 환원 그래핀옥사이드(rGO)가 분산된 폴리에틸렌 복 합체를 마스터배치로 제조하였다. 마스트배치는 (*n*-BuCp)₂ZrCl₂/methylaluminoxane(MAO) 촉매계를 사용하여 에틸 렌 중합 후 반응기 내에 개질한 2D-나노시트를 첨가하여 혼합하는 방법으로 제조하였다. 복합체의 열적, 기계적 성 질 및 미세구조를 조사하였다. 폴리에틸렌 매트릭스에 2D-나노시트는 균일하게 분산되었으며, ODA 개질로 매트릭 스와 2D-나노시트 계면의 접착력이 증가한 것으로 판단된다. 2D-나노시트 첨가에 따라 열적성질은 크게 변하지 않 았지만, 열안정성 및 기계적 물성은 크게 증가하였다(5 wt% 첨가하였을 때 인장강도와 모듈러스는 각각 15% 및 100% 증가). 따라서 마스터배치를 사용한 나노복합체 제조는 고성능 폴리올레핀 제조에 유용할 것으로 판단된다.

Abstract: Polyethylene/modified 2D-nanosheets composites were fabricated via the masterbatch technique which was synthesized by reactor mixing under mild conditions using (*n*-BuCp)₂ZrCl₂/methylaluminoxane (MAO) catalyst. The 2D-nanosheets were modified with octadecylamine (ODA) for enhancement of dispersion and interaction with the polymer matrix. Microstructure, thermal and mechanical properties of composites were examined. The modified 2D-nanosheets were homogeneously dispersed across the composites and showed good interfacial adhesion between the modified 2D-nanosheets and polyethylene matrix. The thermal stabilities and mechanical properties of composites were significantly enhanced (e.g., up to 15% increase in tensile strength and 100% increase in Young's modulus for composites containing 5 wt% 2D-nanosheets). Thus, the masterbatch technique was able to produce high-performance polyolefins.

Keywords: reactor mixing, 2D-nanosheets, MoS2, rGO, masterbatch.

서 론

폴리에틸렌(polyethylene, PE)과 그래핀 유도체 및 이황화 몰리브덴(molybdenum disulfide, MoS₂)과 같은 2D-나노시트 를 이용한 PE 나노복합체 제조에 대한 연구는 다양한 방법 으로 진행되었다. 이러한 나노복합체 제조는 용융혼합,¹ 용액 혼합² 및 *in-situ* 중합법이³ 주로 사용되는데, 그 중에서도 *in-situ* 중합법이 가장 효과적으로 2D-나노시트를 분산시키는 것 으로 알려져 있다. *In-situ* 중합법을 통해 합성된 PE/graphene oxide(GO) 나노복합체는 열안정성 및 기계적 물성이 개선되었다.⁴ 또한 *in-situ* 중합법을 통해 합성된 PE/MoS₂-octadecylamine(ODA) 나노복합체는 우수한 계면 접착력으로 PE 매트 릭스에 잘 분산되었고, 뛰어난 열안정성 및 기계적 물성을 나 타내었다.⁵

에틸렌 *in-situ* 중합은 2D-나노시트를 중합용매에 분산시킨 후, 촉매를 주입하여 2D-나노시트의 분산이 균일하고 함량이 높은 복합체 제조가 가능하다.⁶ 한편, 반응기 혼합법은 에틸 렌 용액 중합 종료 시점에 2D-나노시트를 반응기 내에 첨가 하여 혼합하는 방법으로, *in-situ* 중합과 용액 혼합의 장점을 혼용한 것이다.⁷ 2D-나노시트를 함유한 마스터배치 기반 용 융혼합은 많은 장점을 가지고 있다. 고분자 매트릭스 내에 필 러의 분산이 균일한 마스터배치는 가공과정에서 그래핀이 재

[†]To whom correspondence should be addressed. dolee@knu.ac.kr, ORCID®0000-0001-9205-3836 kbyoon@knu.ac.kr, ORCID®0000-0001-5174-8236 ©2020 The Polymer Society of Korea. All rights reserved.

응집되는 것을 방지하여, 나노복합체의 기계적 물성 및 열안 정성 향상이 효과적이라고 보고되고 있다.⁸⁻¹⁰

본 연구에서는 2D-나노시트를 고함량으로 함유한 마스터 배치를 제조하여 상업용 PE와 용융 혼합으로 PE/2D-나노시 트 복합체를 제조하였다. 마스터배치는 메탈로센 촉매인 bis(*n*butyl)cyclopentadienyl zirconium dichloride((*n*-BuCp)₂ZrCl₂) 와 공촉매인 메틸알루미녹산(methylaluminoxane, MAO)을 톨 루엔에 용해시켜 에틸렌 중합을 하였다. 2D-나노시트인 GO 를 중합 용제인 톨루엔에 효과적인 분산을 위하여 옥타데실 아민(octacdecylamine, ODA)을 GO와 반응시켜 GO 표면에 일킬기를 도입하였으며, MoS₂는 *n*-BuLi을 이용하여 박리 후 ODA와의 반응으로 알킬기를 도입하였다.¹¹

반응기 혼합법은 중합 반응기에 톨루엔, 공촉매인 MAO를 넣고 에틸렌을 지속적으로 주입하면서 촉매인 (*n*-BuCp)₂ZrCl₂ 을 주입하여 중합 후 톨루엔에 분산한 개질된 2D-나노시트 를 첨가하여 약 30분간 혼합하여, 2D-나노시트가 함유된 PE/ 2D-나노시트 마스터배치를 제조하였다. 이 마스터배치를 상 용 PE와 용융 혼합하여 PE/2D-나노시트 나노복합체를 제조 하였다. 제조된 나노복합체의 열적, 기계적 성질 등을 조사하 여 2D-나노시트의 효과를 고찰하였다.

실 험

시약. 그라파이트(Timcal Graphite & Carbon, Switzerland, <100 µm, 99.9%), potassium permanganate(Sigma Aldrich, KMnO₄, US, ≥99%), hydrochloric acid(HCl, Duksan Chemical Co., Korea, 37%), sodium nitrate(Daesung Co., Korea), hydrogen peroxide(H2O2, Duksan Chemical Co., Korea, 28%), sulfuric acid(H₂SO₄, Duksan Chemical Co. Korea), Molybdenum disulfide(MoS₂, Sigma Aldrich, US), nbutyllithium(n-BuLi, Sigma Aldrich, US, 2.5 M in hexane), octadecylamine(ODA, Tokyo Chemical Industry Co. LTD, Japan), methylaluminoxane(PMAO, Tosoh Finechem Co., Japan, 8.7 wt% Al in toluene), bis(n-butyl)cyclopentadienyl zirconium dichloride((n-BuCp)₂ZrCl₂, Strem Chem. Co., US), 메탄올(Duksan Chemical Co., Korea), 에탄올(Duksan Chemical Co., Korea)을 사용하였다. 톨루엔(Duksan Chemical Co., Korea)은 사용 전에 질소 하에서 나트륨-벤조페논을 사용하 여 증류하였다. 단량체인 에틸렌은 중합용을 구입하였으며, 상업용 고밀도 폴리에틸렌(high density polyethylene, HDPE, M690)은 대한유화(주) 제품을 사용하였다.

GO-ODA 제조. 그라파이트를 Hummers 방법으로 산화시 켜 GO를 제조하고, GO 1.0 g을 증류수 500 mL에 팁 초음파 처리를 통해 분산시켰다.^{12,13} 에탄올 500 mL에 ODA 8.0 g을 녹이고 GO 분산 용액과 혼합하고 100 ℃에서 24시간 환류시 켰다. 미반응 ODA를 제거하기 위해 60 ℃ 에탄올 1 L에 30 분간 교반한 후 필터하였으며 이 과정을 5번 반복하였다. 남 은 용매를 제거하기 위해 60 ℃에서 24시간 진공 건조하였다. MoS₂-ODA 제조. MoS₂ 2.0 g에 *n*-BuLi 20 mL를 고압반 응기에 혼합한 후 180 ℃에서 12시간 질소분위기 하에서 반 응시켜 LiMoS₂를 얻었다. 이를 ODA 16.0 g을 용해한 혼합 용액(증류수/에탄을 =1/1 vol/vol) 1 L에 LiMoS₂를 서서히 가 하고 상온에서 24시간 교반시킨다.¹⁴ 이렇게 만들어진 생성물 에 남아있는 미반응 ODA를 제거하기 위해 60 ℃에서 에탄 을 1 L에 30분간 교반한 후 여과하였으며, 이 과정을 5번 반 복하였다. 이를 60 ℃에서 24시간 진공 건조하여 MoS₂-ODA 를 제조하였다.

반응기 혼합법에 의한 마스터배치 제조. 300 mL 유리반응 기를 질소 치환을 4회 반복하여 반응기 내에 있는 산소와 수 분을 제거하고, 1 기압의 에틸렌 하에서 톨루엔 200 mL와 MAO 공촉매, (n-BuCp)₂ZrCl₂ 촉매를 차례로 주입하여 중합 한 후, 2D-나노시트가 분산된 톨루엔 용액을 첨가하여 30분 간 용액 혼합하였다. 중합 후 10% HCl-메탄올 용액을 가하 여 중합 반응을 종결시키고 메탄올 600 mL에 중합체를 침전 시키고, 여과하여 진공상태에서 60 ℃로 건조시켰다. 얻어진 PE/2D-나노시트 마스터배치 중 2D-나노시트인 GO-ODA와 MoS₂-ODA를 사용하여 얻은 마스터배치를 각각 Cat-mGO와 Cat-mMoS₂라 명명하였다.

PE/2D-나노시트 복합체 제조. 상용 PE와 마스터배치를 Hakke Minilab을 사용하여 질소분위기 하에 180 ℃, 100 rpm, 5분 조건으로 용융 혼합하였다. 2D-나노시트의 함량이 0.1~ 5.0 wt%인 나노복합체를 제조하였다.

분석. MoS₂의 표면을 개질한 MoS₂-ODA의 구조는 적외선 /근적외선 분광광도계(FTIR, Frontier, PerkinElmer, US)로 확 인하였다. 시편은 KBr 펠릿을 제조하여, 4000~400 cm⁻¹ 파장 대에서 4 cm⁻¹ 해상도, 128 scan 조건에서 투과모드로 측정하 였다.

2D-나노시트의 층간 간격은 X-선 회절 분석기(XRD, D/ Max -2500, Rigaku, Germany)를 이용하여 구하였다.

PE/2D-나노시트 복합체의 용융흐름지수는 melt flow indexer(Davenport Co., US)를 사용하여 190 °C에서 2.16 kg 하중(ASTM D1238) 조건에서 측정하였다.

열안전성은 열중량분석기(TGA, Q500, TA Instruments, US) 를 이용하여 마스터배치와 나노복합체를 질소분위기 하에 상 온에서 800 ℃까지 20 ℃/min 승온 조건에서 측정하였다.

나노복합체의 기계적 특성을 알아보기 위해 마스터배치와 나노복합체를 만능시험기(SALT, ST-1001, Korea)를 이용하 였으며, 시편은 핫프레스로 시트를 제조하고, 시편 모양은 덤 벨 형태(ASTM D882)로 측정 부분의 크기는 4.0 × 20.0 × 1.0 mm³ 이고 인장속도는 50.0 mm/min으로 측정하였다.

결정화도와 녹는점은 시차주사열량기(DSC, DSC131evo, Setaram, France)를 이용하여 질소분위기 하에서 측정하였다.

측정조건은 상온에서 200 ℃까지 가열시키고, 2분간 유지한 후 20 ℃까지 냉각시키며 승온/냉각속도 10 ℃/min로 하여 두 번째 승온조건의 값을 취하였다.

형태학적 특성을 알아보기 위해 전계방사형 주사전자현미 경(SEM, SU8220, Hitachi, Japan)을 이용하여 나노복합체 내 의 나노시트의 분산정도를 확인하였다.

결과 및 토론

GO-ODA 제조. GO-ODA의 합성 및 구조는 본 연구실의 이전 연구결과에 나타내었다.¹⁵ GO와 GO-ODA를 반응기 혼 합법에 사용하기 위하여 중합 용제인 톨루엔에 분산성을 조 사하였다. 톨루엔에 GO와 GO-ODA를 농도 2 mg/mL 조건 하에 초음파처리를 통하여 분산시킨 후 시간 경과에 따른 침 전정도를 Figure 1에 나타내었다.

초음파 분산 후 GO와 GO-ODA는 톨루엔에 분산이 효과 적인 것을 확인하였다. 7일 동안 방치한 결과 GO는 톨루엔 에 응집된 형상을 보였지만, GO-ODA는 침전되지 않은 것을 보아 GO 표면을 알킬기로 개질함으로써 효과적으로 분산되 는 것을 확인하였다.¹⁶

After sonication

After 7 days

Figure 1. Digital photographs for the dispersion status of (a) GO; (b) GO-ODA in toluene (concentration: 2.0 mg/mL).

Figure 2. FTIR spectra of MoS₂, LiMoS₂, and MoS₂-ODA.

MoS₂-ODA 제조. 리튬 원자는 MoS₂ 층에 쉽게 삽입될 수 있고, 삽입된 리튬과 물 사이의 반응으로 수소가 발생되어 팽 창에 의해 MoS₂ 층이 박리된다.^{17,18} MoS₂의 반응성은 매우 낮지만, 화학적으로 intercalation된 MoS₂ 나노시트는 내부 가 장자리에 핀 홀 및 결함이 발생된다.^{19,20} 내부의 핀 홀 및 결 함 부분에 아민 화합물과 높은 분자 친화성을 가지기 때문에 알킬아민 화합물로 MoS₂의 표면 개질이 가능하다.²¹⁻²³

MoS₂-ODA의 구조를 확인하기 위하여 MoS₂, LiMoS₂와 MoS₂-ODA를 FTIR로 확인하여 그 스펙트럼을 Figure 2에 나 타내었다.

Figure 2에서 보듯이 MoS₂와 LiMoS₂는 특정 피크를 관찰 할 수 없었고, MoS₂-ODA는 ODA의 특성 피이크를 화살표 로 나타내었다. -CH₂- 알킬 피크가 2920와 2850 cm⁻¹에서 관 찰되었고, N-H 피크가 1500 cm⁻¹, -C-NH 피크가 1100 cm⁻¹에 각각 나타난 것으로 ODA가 MoS₂에 결합되었음을 확인할 수 있었다.²⁴

XRD 측정은 층간 간격과 회절 각에 관한 정보를 알 수 있 다. Figure 3에 MoS₂와 MoS₂-ODA의 XRD 패턴을 나타내었다.

MoS₂의 (002)면은 약 14.3°로 층간 간격은 0.67 nm로 나타 났지만, MoS₂-ODA의 회절 피크는 30° 이상의 피크는 대부 분 사라지고, (002) 면의 패턴은 6.2° 부근으로 이동하였으며, 층간 간격은 1.4 nm로 100% 이상 증가하여 완전한 박리는 아니지만 충분히 intercalation된 것을 확인하였다.²⁴ 또한 (001) 면에 반사된 (00/) 면이 12.2°, 18.3°에서 관찰되었다. 이는 규 칙적인 판상구조에 기인한 것으로 (002) 면의 배수, 3배수에 해당하는 값으로 MoS₂ 층간에 ODA의 삽입으로 비슷한 판 상 거리를 유지하는 등거리의 층간 구조를 가지기 때문이다.²⁵

반응기 혼합법. 마스터배치로 적용하기 위하여 메탈로센 촉매인 (*n*-BuCp)₂ZrCl₂를 사용하여 에틸렌 중합을 실시 후, 톨루엔에 분산된 GO-ODA와 MoS₂-ODA를 각각 일정량 주 입하였다. 생성 PE 내 GO-ODA와 MoS₂-ODA의 함량 조절

Figure 3. XRD patterns of (a) MoS₂; (b) MoS₂-ODA.

	Input amount of filler (mg)	Activity ^a	Filler content (wt%)	MI ^b (g/10min)
Neat-PE	- 2200		-	3.1
	25	1880	0.23	3.4
Cat-mGO/PE	50	1690	0.52	3.2
	150	1510	1.91	3.0
	250	1310	3.78	2.9
	500	1150	9.39	2.8
Cat-mMoS _{2/} PE	25	2080	0.22	3.3
	50	1820	0.44	3.3
	150	1680	1.87	3.0
	250	1480	3.45	2.9
	500	1290	8.55	2.9

Table 1. Polymerization and Reactor Mixing Results according to the Input Amount of mGO and $mMoS_2$

Polymerization conditions: 1 atm C_2H_4 , $[Zr] = 3 \mu mol$, [Al]/[Zr] = 2570, 70 °C, 2 hr.

^{*a*}kg-PE/mol-Zr-h, ^{*b*}g/10 min measured at 190 °C.

Table 2. Thermal Properties of the PE/MB-mGO and PE/MB-mMoS $_2$ Composites

	Filler content (wt%)	<i>T</i> _{d5%} (°C)	T _{dmax} (°C)	<i>T</i> _c (°C)	<i>T</i> _m (°C)	Xc (%)
Commercial PE	0	387.3	441.3	116.7	129.8	61.4
PE/MB- mGO	0.1	402.0	458.9	116.6	130.5	68.1
	0.2	393.3	459.7	116.0	131.1	69.4
	0.5	400.5	460.0	116.2	131.1	65.2
	1.0	402.2	462.0	117.2	131.0	71.7
	3.0	412.4	468.0	117.6	130.8	71.2
	5.0	417.2	476.1	117.4	130.8	73.8
PE/MB- mMoS ₂	0.1	390.3	457.6	117.1	130.2	72.5
	0.2	393.4	457.8	117.2	130.3	72.4
	0.5	389.0	458.0	117.8	130.9	66.3
	1.0	391.4	457.0	117.9	131.1	69.5
	3.0	398.3	459.3	118.3	131.2	74.2
	5.0	397.2	461.1	118.3	131.7	75.3

Calculated from $X_c = \Delta H_f \Delta H^\circ_f \times 100 \ (\Delta H^\circ_f = 293 \text{ J/g}).$

및 분자량 조절을 위해 예비실험으로 중합 온도, 공촉매의 양 ([Al]/[Zr]), 및 중합 시간 변화에 따른 중합 결과를 토대로 거 동을 고찰하였다(Table 1). 생성된 PE는 각각 Cat-mGO/PE와 Cat-mMoSy/PE로 명명하였다.

마스터배치를 이용한 PE/2D-나노시트 복합체. 반응기 혼 합법으로 제조한 복합체 중에서 GO-ODA 함량이 9.39 wt% 인 복합체와 MoS₂-ODA 함량이 8.55 wt%인 복합체를 마스 터배치로 활용하여 상용 PE와 용융혼합하여 PE/2D-나노시트

Figure 4. TGA curves of (a) PE/MB-mGO; (b) PE/MB-mMoS₂ composites at various contents.

복합체를 제조하였다. 이를 각각 PE/MB-mGO와 PE/MBmMoS₂로 명명하고, 2D-나노시트 함량과 종류에 따른 분산 및 복합체 특성을 조사하였다.

열적 특성: PE/MB-mGO와 PE/MB-mMoS₂의 열안정성을 조사하여 Figure 4와 Table 2에 나타내었다. 상용 PE의 열분 해온도는 *T*_{d5%}와 *T*_{d10%}은 각각 387 ℃와 403 ℃로 나타났다. 마스터배치를 활용하여 제조한 PE/MB-mGO 복합체 중 GO-ODA 함량이 5 wt%인 복합체의 열안정성은 상용 PE에 비하 여 30 ℃ 이상 증가하였으며, MoS₂-ODA의 경우에도 30 ℃ 이상 증가하였다.

GO-ODA가 0.1 wt% 첨가된 복합체의 경우에는 *T*_{45%}와 *T*_{d10%}은 각각 15 ℃와 13 ℃ 증가하였다. 나노복합체의 열안정 성 증가는 나노 필러의 효과적인 분산으로 고분자 사슬의 열 운동을 제한함으로써 복합체의 열분해 활성화 에너지를 증가 시키고,^{26,27} 2D-나노시트의 물리적 장벽 작용으로 분해 생성 물의 이탈을 지연시키기 때문이다. 2D-나노시트는 PE의 열 화 과정을 지연시키는 것은 고분자의 열분해 과정에서 발생 하는 거대 라디칼을 제거할 수 있기 때문이다.²⁸

Polym. Korea, Vol. 44, No. 6, 2020

PE/MB-mGO와 PE/MB-mMoS₂ 복합체의 결정화 온도, 녹 는점과 결정화도를 측정하여 그 결과를 Table 2에 정리하였다.

PE/MB-mGO와 PE/MB-mMoS₂ 복합체의 결정화 온도 및 녹는점은 상용 PE보다 1~2 ℃ 정도 증가하였으나, DSC thermogram의 모양은 동일하였다. 복합체의 결정화 온도와

36 (a) 34 **Fensile strength (MPa)** 32 28 PE/MB-mG0 PE/MB-mMoS 26 2 3 2D-nanosheets content (wt%) 1300 (b) 1200 1100 Modulus (MPa) 1000 900 800 700 600 PE/MB-mGO PE/MB-r 500 4 0 2 3 2D-nanosheets content (wt%) 1400 (C) 1200 1000 Elongation at break (% 800 600 400 200 PE/MB-mG0 PE/MB-mMoS 0 0 2 2D-nanosheets content (wt%)

Figure 5. Effect of GO-ODA and MoS_2 -ODA content on (a) tensile strength; (b) modulus; (c) elongation at break of PE/MB-mGO and PE/MB-mMoS₂.

녹는점은 큰 변화가 없었으나, 2D-나노시트의 첨가에 따라 결정화도는 2D-나노시트의 함량이 증가할수록 증가하였으며, 5 wt% 함유된 복합체의 결정화도는 상용 PE에 비해 10% 이 상 증가하였다.

기계적 특성 및 모폴로지: 마스터배치를 활용하여 제조한 PE/MB-mGO와 PE/MB-mMoS₂ 복합체의 인장강도, 모듈러 스 및 연신율을 측정하여 Figure 5에 나타내었다.

인장강도는 상용 PE와 비교하였을 때, GO-ODA 함량이 5 wt%인 복합체는 약 25% 증가하였고, MoS₂-ODA 함량이 3 wt%인 복합체는 약 15% 증가하였다. PE/MB-mGO 복합체 의 모듈러스는 GO-ODA 함량이 5 wt%일 때 2배 증가하였 으며, PE/MB-mMoS₂ 복합체의 MoS₂-ODA 함량이 0.5 wt% 이상에서는 크게 증가하지 않았다.

PE/MB-mGO 복합체의 연신율은 GO-ODA 함량이 1 wt% 이상에서 급격히 감소하였으나, PE/MB-mMoS₂ 복합체의 MoS₂-ODA 함량이 3 wt% 이하에서는 일정하였다.

PE/MB-mGO 및 PE/MB-mMoS₂ 복합체의 기계적 물성 변 화 및 열안정성의 결과에서 2D-나노시트의 효과적 분산이 이 루어진 것으로 판단되는데, 이를 확인하기 위하여 2D-나노시 트의 분산을 SEM으로 복합체의 파단면을 관찰하여 Figure 6 에 나타내었다.

Figure 6. SEM images of (a) PE/MB-mGO 1.0 wt%; (b) PE/MB-mMoS₂ 1.0 wt% composites.

MoS₂-ODA의 입자크기는 약 ~4 μm이고 GO-ODA의 경우 는 약 ~10 μm 정도를 나타내었다(원 내부).

Figure 6(a)에서 보듯이 GO-ODA의 층 간은 볼 수 없지만 분산은 효과적인 것으로 판단되며, PE와 GO-ODA 계면이 밀착되어 있는 것으로 보아 알킬기인 ODA로 개질한 GO와 상용성이 있는 것으로 생각된다. 또한 Figure 6(b)의 PE/MBmMoS₂ 경우에도 MoS₂ 층은 2~3층으로 보이며 효과적인 분 산이 되었다. MoS₂와 PE 계면이 밀착되어 있는 것으로 보아 접착력이 비교적 높은 것으로 생각된다. 소량의 2D-나노시트 가 함유되어도 우수한 기계적 물성을 나타내는 것은 나노시 트의 분산이 효과적이고, 매트릭스와의 강한 계면 접착에 기 인한 것으로 판단된다.²⁹

결 론

그라파이트를 산화시킨 그래핀옥사이드(graphene oxide, GO)와 MoS₂를 옥타데실아민(*n*-octadecylamine, ODA)을 이 용하여 표면 개질된 GO-ODA와 MoS₂-ODA를 얻었다. 표면 개질된 2D-나노시트를 FTIR과 X-선 회절 분석기로 구조 및 intercalation을 확인하였다.

2D-나노시트 함량을 높이기 위하여 공촉매인 MAO와 촉 매인(*n*-BuCp)₂ZrCl₂를 이용한 에틸렌 중합 후 톨루엔에 분산 된 GO-ODA와 MoS₂-ODA를 첨가하여 2D-나노시트 함량이 약 10 wt%인 마스터배치를 제조하였다.

상용 PE와 마스터배치를 용융 혼합 과정을 거쳐 나노복합 체를 제조하였으며, 상용 PE와 나노시트 함량이 3 wt% 나노 복합체의 *T*_{d10%}을 비교하였을 때 GO-ODA와 MoS₂-ODA의 경우 각각 30 ℃ 및 12 ℃ 증가하였다.

2D-나노시트 함량이 5 wt%인 PE/mGO 및 PE/mMoS₂ 복 합체와 상용 PE와 인장강도를 비교하였을 때, GO-ODA의 경우는 약 90% 증가하였고, MoS₂-ODA는 약 15% 증가하였 다. 연신율은 MoS₂-ODA를 함유한 복합체는 거의 변화가 없 었으나, GO-ODA의 경우는 함량이 증가할수록 급격히 감소 하였다. 반응기 혼합법은 2D-나노시트를 효과적으로 분산시 킬 수 있을 뿐만 아니라 함유량을 높일 수 있어서 마스터배 치 제조에 유용한 방법이다. GO 및 MoS₂를 함유한 마스터 배치를 이용한 PE/2D-나노시트 복합체는 우수한 열안정성, 기계적 물성을 갖는 PE 제조에 효과적인 방법으로 판단된다.

감사의 글: 이 성과는 2019년도 정부(과학기술정보통신부) 의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2019R1A2C3003890).

참 고 문 헌

 V. Mittal, G. E. Luckachan, and N. B. Matsko, *Macromol. Chem. Phys.*, **215**, 255 (2014).

- S. Cheng, X. Chen, Y. G. Hsuan, and C. Y. Li, *Macromolecules*, 45, 993 (2012).
- H. X. Zhang, E. B. Ko, J. H. Park, Y. K. Moon, X. Q. Zhang, and K.-B. Yoon, *Compos. Sci. Technol.*, **136**, 61 (2016).
- H. X. Zhang, J. H. Park, E. B. Ko, Y. K. Moon, D. H. Lee, Y. M. Hu, and K.-B. Yoon, *RSC Adv.*, 6, 73013 (2016).
- H. Zhang, Y. K. Moon, X. Q. Zhang, H. X. Zhang, and K.-B. Yoon, *RSC Adv.*, 6, 112429 (2016).
- Y. Huang, Y. Qin, Y. Zhou, H. Niu, Z.-Z. Yu, and J.-Y. Dong, *Chem. Mater.*, 22, 4096 (2010).
- D. A. Simon, E. Bischoff, G G. Buonocore, P. Cerruti, M. G. Raucci, H. Xia, H. S. Schrekker, M. Lavorgna, L. Ambrosio, and R. S. Mauler, *Mater. Design*, **134**, 103 (2017).
- C. Bao, L. Song, W. Xing, B. Yuan, C. A. Wilkie, J. Huang, and Y. Hu, J. Mater. Chem., 22, 6088 (2012).
- F. Shehzad, M. Daud, and M. A. Al-Harthi, J. Therm. Anal. Calorim., 123, 1501 (2016).
- F. D. C. Fim, N. R. Basso, A. P. Graebin, D. S. Azambuja, and G. B. Galland, *J. Appl. Polym. Sci.*, **128**, 2630 (2013).
- P. Joensen, R. F. Frindt, and S. R. Morrison, *Mater. Res. Bull.*, 21, 457 (1986).
- W. S. Hummers, Jr. and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).
- S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus, Jr., *ACS Catal.*, 2, 949 (2012).
- H. Zhang, Y. K. Moon, X. Q. Zhang, J. S. Liu, H.-X. Zhang, and K.-B. Yoon, *Eur. Polym. J.*, 87, 60 (2017).
- H.-X. Zhang, J. H. Park, Y. K. Moon, E. B. Ko, X. Q. Shang, and K.-B. Yoon, J. Polym. Sci., Polym. Chem. Ed., 65, 855 (2017).
- W. Li, X. Z. Tang, H. B Zhang, Z. G. Jiang, Z. Z. Yu, X. S. Du, and Y. W. Mai, *Carbon*, **49**, 4724 (2011).
- X. Wang, W. Xing, X. Feng, L. Song, and Y. Hu, *Polym. Rev.*, 57, 440 (2017).
- C. George, A. J. Morris, M. H. Modarres, and M. De Volder, *Chem. Mater.*, 28, 7304 (2016).
- G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. W. Chen, and M. Chhowalla, *Nano Lett.*, **12**, 526 (2012).
- 20. G. Eda, T. Fujita, H. Yamaguchi, D. Voiry, M. W. Chen, and M. Chhowalla, *ACS Nano*, **6**, 7311 (2012).
- W. M. R. Divigalpitiya, R. F. Frindt, and S. R. Morrison, *Science*, 246, 369 (1989).
- 22. S. S. Chou, M. De, J. Kim, S. Byun, C. Dykstra, J. Yu, J. X. Huang, and V. P. Dravid, *J. Am. Chem. Soc.*, **135**, 4584 (2013).
- T. Liu, C. Wang, X. Gu, H. Gong, L. Cheng, X. Z. Shi, L. Z. Feng, B. Q. Sun, and Z. Liu, *Adv. Mater.*, 26, 3433 (2014).
- J. Yoon, J.-W. Shin, J. Lim, M. Mohammadniaei, G. B. Bapurao, T. Lee, J.-W. Choi, *Colloid Surf. B-Biointerfaces*, 159, 729 (2017).
- V. Lavayen, N. Mirabal, C. O'Dwyer, M. A. S. Ana, E. Benavente, C. M. S. Torres, and G. González, *Appl. Surf. Sci.*, 253, 5185 (2007).
- P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, *Polymer*, 52, 4001 (2011).
- 27. M. E. Achaby and A. Qaiss, Mater. Des., 44, 81 (2013).
- G. Gonçalves, P. A. Marques, A. Barros-Timmons, I. Bdkin, M. K. Singh, N. Emami, and J. Grácio, J. Mater. Chem., 20, 9927 (2010).
- A. S. Luyt, M. D. Dramićanin, Ž. Antić, and V. Djoković, *Polym. Test.*, 28, 348 (2009).