3 , 2003 , pp 176-182

27

Synthesis, Cure Behavior, and Rheological Properties of Fluorine-Containing Epoxy Resins

Soo-Jin Park[†], Fan-Long Jin, Jae-Rock Lee, and Jae-Sup Shin^{*}

Advanced Materials Division, Korea Research Institute of Chemical Technology, P.O. BOX 107, Yusong, Daejon 305-600, Korea *Department of Chemistry, Chungbuk National University, Chongju, Chungbuk 361-763, Korea [†]e-mail : psjin@krict.re.kr (Received December 28, 2002;accepted March 16, 2003)

: 2-triflu	2-chloro-α,α,	,α-trifluorotoluene lether (FER)	glycerol dig . FE	glycidyl ether R/DDM		
DSC DSC		, Flynn-	Wall-Ozawa			
(<i>E</i> _a) .	,	-				
, Arrhenius			가		$(E_{\rm c})$	
, FT-IR, ¹³ C NMF	$R, \qquad {}^{19}\mathrm{F}\mathrm{NMR}$					
, FER/DDM	E _a 53.4 kJ/mol	,				가
	. <i>E</i> _c	41.6 kJ/mol	,	가		

ABSTRACT : The fluorine-containing epoxy resin, 2-trifluorotoluene diglycidylether (FER) was prepared by reaction of 2-chloro- α,α,α -trifluorotoluene with glycerol diglycidylether in the presence of pyridine catalyst. Curing behavior of FER/DDM system was investigated using dynamic and isothermal DSC. Cure activation energy (E_a) was determined by Flynn-Wall-Ozawa's equation. The rheological properties of FER/DDM system were studied under isothermal condition using a rheometer. Cross-linking activation energy (E_c) was determined from the Arrhenius equation based on gel time and curing temperature. As a result, the chemical structure of FER was confirmed by FT-IR, ¹³C NMR, and ¹⁹F NMR spectroscopy. The cure activation energy of FER/DDM system was 53.4 kJ/mol and conversion and conversion rate were increased with the curing temperature. The cross-linking activation energy of FER/DDM system was 41.6 kJ/mol and gel time was decreased with the curing temperature.

Keywords : fluorine, epoxy resins, cure behavior, activation energy, rheological properties.

1 가 1. 가 가 liner,

176

12

, pyridine 2-chloro- α, α, α -trifluorotoluene (CTFT) glycerol diglycidyl ether (GDE) CF₃ , 2trifluorotoluene diglycidylether (FER) , FT-IR, ¹³C NMR, ¹⁹F NMR FER . , (DSC) 4,4'-diaminodiphenol methane (DDM) FER

2.

. 2-Chloro- α , α , α -trifluorotoluene (CTFT) Lancaster = 99%), glycerol diglycidyl ether (, pyridine (GDE) Aldrich Junsei =99.5%), hydroquinone (Aldrich (= 99%), DDM Aldrich . DDM Figure 1

. CTFT (27.1 g, 0.15 mol), GDE (30.6 g, 0.15 mol), pyridine (0.28 g) hydroquinone (0.12 g) 7 500 nL 30 7 t 24 . 100 , 80% (FER) . FT-IR, ¹³C NMR,

4,4'-DiaminodiphenyImethane (DDM)

Figure 1. Chemical structures of the materials used.

. FT-IR Bio-Rad digilab FTS-165 KBr pellet 400 4000 cm⁻¹ . 13 C NMR 19 F NMR $-d_6$, BRUKER DRX300 spectrometer

DSC	. FER/DDM			
5, 10, 15,	20	/min	DSC	30 mL/min
100			DSC	, 90, 90,
, (α),			(d a /dt)	
•	가 FER/DDM			
가		$(E_{\rm c})$		
plate 가		(Phy	sica, Rhe	eo Lab. MC
100)		(G ¢),		$(G^{\boldsymbol{z}}),$
tan d				

Scheme 1. Synthetic mechanism of fluorine-containing epoxy resins.

	,	0.5
mm,	5 Hz .	
3.		
	. Pyridine	CTFT
GDE		FER
	Scheme 1	. ,
FER		FT-IR,
¹³ C NMR,	¹⁹ F NMR	
,		
IR (KBr): v	v = 504, 703, 758, 851, 9	910, 986, 1105, 1256,
1330, 1435, 14	58, 1510, 1612, 2877, 2920,	, 3001, 3058, 3494 cm ⁻¹ .
¹³ C NMR s	pectrum: d = 29.2, 43.3, 5	0.5, 70.6, 78.4, 127.5,
127.7, 131.6, 1	33.9 ppm.	
¹⁹ F NMR sj	pectrum: d = -61.95 ppm.	
Figure 2	CTFT, GDE	
FER FT-IR	2	. CTFT
С–Н	3058 cm^{-1} ,	C = C 1612
cm ⁻¹ , CF	23	1105 cm ⁻¹
	GDE	С-О-С

 $851 \quad 910 \text{ cm}^{-1}$, C-C

Figure 2. FT-IR spectra of fluorine-containing epoxy resins. (a) CBTF, (b) GDE, and (c) FER.

, Figure 4 F NMR spectra CIFI

$$-CF_3$$
 (-61.95 ppm) 7
. FT-IR, ¹³C NMR,
¹⁹F NMR

 7
 .

 DSC
 .

 FER/DDM
 Figure 5

Figure 3. ¹³C NMR spectrum of fluorine-containing epoxy resins.

-20 -40 -60 -80 -100 -120 -140 **Figure 4.** ¹⁹F NMR spectrum of fluorine-containing epoxy resins.

Figure 5. Dynamic DSC thermogram of FER/DDM system.

Table 1. DSC Thermogram Data of FER/DDM Systemat Different Heating Rates

heating rate	initiation of curing temperature	maximum peak temperature	final curing temperature	ΔH
(/min)	$T_{\rm i}()$	$T_{p}()$	$T_{\rm f}()$	(J/g)
5	49	130	210	416.2
10	62	147	231	415.6
15	71	159	243	412.7
20	77	166	247	394.9

Table 2. Cure Activation Energy (E_a) of FER/DDM System

kinetic		E_{a}			
factor	5	10	15	20	(kJ/mol)
$1/T \times 10^{3}$	2.48	2.38	2.32	2.28	52.4
ln q	1.61	2.30	2.72	2.99	55.4

Figure 6. DSC thermograms of FER/DDM system at various cure temperatures.

$$\boldsymbol{a} = \frac{\Delta H_t}{\Delta H_R} \times 100\,(\%) \tag{2}$$

DSC

가

$$, DH_t t , DH_R$$

$$DH_t \quad dH/dt$$
 ,

$$t \qquad \frac{dH/dt}{(d\mathbf{a}'dt)} \qquad (3)$$

$$\frac{d\alpha}{dt} = \frac{(dH/dt)}{\mathbf{D}H_R}$$
(3)

,
$$dH/dt$$
 t

가 가

Figure 7. Conversion vs. cure temperature of FER/DDM system.

Figure 8. Conversion rate vs. cure temperature of FER/DDM system.

$$\frac{d\alpha}{dt} = A \cdot f(\alpha) \cdot \exp(\frac{-E_c}{RT})$$
(4)

, 27 3 , 2003

Figure 9. Plots of G', G'', and $\tan \delta vs$. time of FER/DDM system. (a) 100 , (b) 110 , (c) 120 , and (d) 130

 $\ln t_c = \left[\ln(\int_0^{a_c} \frac{d\alpha}{f(\alpha)}) - \ln A\right] + \frac{E_c}{RT}$ (5)

²¹ (5)

$$\ln t_{\rm c} = \frac{E_{\rm c}}{RT} + C \tag{6}$$

, t_c , R , T, C . Table 3 (6) $\ln t_c \ vs. \ 1/T$ (E_c/R) E_c Table 4 , 41.6

Table 3. Gel Times of FER/DDM System

reaction temperature ()	100	110	120	130
gel time (sec)	1546	826	749	529

Table 4. Cross-linking Activation Energy (E) of FER/DDM System

kinetic	curing temperature ()				$E_{ m c}$
factor	100	110	120	130	(kJ/mol)
$1/T (\times 10^3)$	2.68	2.61	2.54	2.48	41.6
ln t _c	7.34	6.72	6.62	6.27	41.0

kJ/mol

 $E_{\rm c}$ Flynn-Wall-Ozawa $E_{\rm a}$

.22

.

, 27 3 , 2003

4.

- ene diglycidylether (FER) , DDM DSC FER/DDM
- 7ト. 1) FT-IR, ¹³C NMR, ¹⁹F NMR (CF₃)
- 2) DSC , FER/DDM (E_a) 53.4 kJ/mol , DSC 7^{+} 3) , 7^{+} , (E_c) 41.6 kJ/mol . 2001 21C

References

- 1. T. Endo, Development and Applications ∳ New Reactive Monomers, CMC, Tokyo, 1993.
- J. M. Charrier, *Polymeric Materials and Processing: Plastics, Elastomers and Composites*, Hanser Publishers, New York, 1991.
- E. S. Wilks, Industrial Polymers Handbook: Products, Processes, Applications, Wiley-Vch, New York, 2001.
- 4. R. Bongiovanni, G. Malucelli, M. Messori, F. Pilati, A.

Priola, C. Tonelli, and M. Toselli, *J. Appl. Polym. Sci.*, **75**, 651 (2000).

- J. W. Stansbury and J. M. Antonucci, *Dent. Mater.*, **15**, 166 (1999).
- 6. E. Hamciuc, C. Hamciuc, I. Sava, M. Sava, and M. Bruma, *Macromol. Mater. Eng.*, **283**, 36 (2000).
- P. K. Gutch, S. Banerjee, D. C. Gupta, and D. K. Jaiswal, J. Polym. Sci., Part A: Polym. Chem., 39, 383 (2001).
- Y. Saegusa and T. Sakai, J. Polym. Sci., Part A: Polym. Chem., 38, 1873 (2000).
- Y. Saegusa, M. Horikiri, D. Sakai, and S. Nakamura, J. Polym. Sci., Part A: Polym. Chem., 36, 429 (1998).
- K. Xie, S.Y. Zhang, J. G. Liu, M. H. He, and S. Y. Yang, J. Polym. Sci., Part A: Polym. Chem., 39, 2581 (2001).
- 11. J. G. Liu, M. H. He, Z. X. Li, Z. G. Qian, F. S. Wang, and S.
- Y. Yang, J. Polym. Sci., Part A: Polym. Chem., 40, 1572 (2002).
- R. Bongiovanni, G. Malucelli, A. Pollicino, and A. Priola, J. Appl. Polym. Sci., 63, 979 (1997).
- V. Castelvetro, L. Montagnini, Mirabello, M. Aglietto, and E. Passaglia, J. Polym. Sci., Part A: Polym. Chem., 39, 32 (2001).
- 14. A. A. Ribeiro, Magn. Reson. Chem., 35, 215 (1997).
- 15. Ozawa, T. Bull. Chem. Soc. Jpn., 38, 1881 (1965).
- 16. H. H. Winter, Polym. Eng. Sci., 27, 1698 (1987).
- 17. D. N. Waters and J. L. Paddy, Anal. Chem., 60, 53 (1988).
- S. J. Park, M. K. Seo, and J. R. Lee, J. Polym. Sci., Part A: Polym. Chem., 38, 2945 (2000).
- 19. S. J. Park, M. K. Seo, J. R. Lee, and D. R. Lee, *J. Polym. Sci., Part A: Polym. Chem.*, **39**, 184 (2001).
- P. A. Oyanguren and R. J. Williams, J. Appl. Polym. Sci., 47, 1361 (1993).
- 21. T. Takahama and P. H. Geil, J. Polym. Sci., 20, 453 (1982).
- 22. S. J. Park, T. J. Kim, and J. R. Lee, *J. Polym. Sci., Part B: Polym. Phys.*, **38**, 2114 (2000).