Article
  • Enhanced Thermal Conductivity of Milled Carbon Fiber/Endo-Dicyclopentadiene Composites by a Magnetic Field
  • Park SM, Cho DH, Lee JK
  • 자기장에 의한 분쇄형 탄소섬유/Endo-Dicyclopentadiene 복합체의 열전도도 향상
  • 박성민, 조동환, 이종근
Abstract
Thermally conductive polymer composites containing milled carbon fibers (MCF) were prepared and the thermal conductivities and the MCF distribution in the matrix were observed. Endo-dicyclopentadiene (endo-DCPD) was used as matrix resin. The MCF was aligned along the direction of the magnetic field applied using a permanent magnet having a magnetic flux density of 0.47 Tesla at the beginning of the curing reaction. The MCF alignment was induced by the resin flow generated by a small amount of iron oxide (III) in the resin. The thermal conductivity was markedly enhanced by 210% at 8 vol% MCF, compared to the unaligned composite without a magnetic field. Such the remarkable enhancement was due to the MCF alignment in the magnetic field direction, as elucidated by optical microscopy. It suggests that high thermal conductivity can be imparted to a composite simply and effectively at low magnetic force using a permanent magnet, as compared to other studies.

분쇄형 탄소섬유(MCF)를 함유한 열전도성 고분자복합체를 제조한 후 열전도도를 측정하였고 매트릭스 내에 분포되어 있는 MCF를 관찰하였다. 매트릭스 수지로는 endo-dicyclopentadiene(endo-DCPD)를 사용하였으며, 수지 경화반응 초기에 자기밀도가 0.47 Tesla인 영구자석으로 자기장을 인가하여 MCF를 자기장 방향으로 배열하였다. 수지 내에 소량의 산화철(III)을 첨가하여 인가된 자기장에 의하여 발생되는 액상 수지의 흐름에 통하여 MCF를 배열하였다. 자기장을 인가하지 않은 복합체와 비교하였을 때 8 vol% MCF 함량에서 열전도도가 약 210% 가량 크게 향상되었다. 이러한 향상효과는 자기장 방향으로 MCF의 배열에 기인한 것이며, MCF 배열현상을 광학현미경 관찰을 통해 규명하였다. 본 연구결과는 다른 연구에 비해 영구자석을 사용하여 낮은 자기력에서 매우 간단하면서도 효과적으로 복합체에 높은 열전도도를 부여할 수 있음을 제시하여 준다.

Keywords: milled carbon fiber; endo-dicyclopentadiene; magnetic field; alignment; optical microscopy

References
  • 1. Han Z, Fina A, Prog. Polym. Sci, 36, 914 (2011)
  •  
  • 2. Al-Saleh MH, Sundararaj U, Carbon, 47, 2 (2009)
  •  
  • 3. Huang X, Jiang P, Tanaka T, IEEE Electrical Insulation Magazine, 27 (2011).
  •  
  • 4. T'Joen C, Park Y, Wang Q, Sommers A, Han X, Jacob A, Int’l J. Refrig, 32, 763 (2009)
  •  
  • 5. Hu M, Yu D, Wei J, Polym. Test, 26, 333 (2007)
  •  
  • 6. Speight JG, Lange’s Handbook of Chemistry, 16th Ed., McGraw-Hill, New York, 2005.
  •  
  • 7. Chung DDL, Appl. Therm. Eng., 21, 1593 (2001)
  •  
  • 8. Sharma A, Tripathi B, Vijay YK, J. Membr. Sci., 361(1-2), 89 (2010)
  •  
  • 9. Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G, Polymer, 51(7), 1614 (2010)
  •  
  • 10. Mahfuz H, Zainuddin S, Parker MR, Al-Saadi T, Rangari VK, Jeelani S, J. Mater. Sci., 44(4), 1113 (2009)
  •  
  • 11. Aldajah S, Haik Y, Mater. Des., 34, 379 (2011)
  •  
  • 12. Donglu S, Peng H, Jie L, Xavier C, Sergey LB, J. Appl. Phys., 97, 064312 (2005)
  •  
  • 13. Takahashi T, Suzuki K, Awano H, Yonetake K, Chem. Phys. Lett., 436(4-6), 378 (2007)
  •  
  • 14. Chen XQ, Saito T, Yamada H, Matsushige K, Appl. Phys. Lett., 78, 3714 (2001)
  •  
  • 15. Takahashi T, Murayama T, Higuchi A, Awano H, Yonetake K, Carbon, 44, 1180 (2006)
  •  
  • 16. Xiang J, Drzal LT, Solar Ener. Mater. Solar Cells, 95, 1811 (2011)
  •  
  • 17. Hara H, Iwanaga SI, Sato H, Setaka R, US Patent 6517744 (2003).
  •  
  • 18. Tobita M, US Patent 6451418 (2002).
  •  
  • 19. Masayuki T, Tateda S, isaKimura T, Yamato M, US Patent 6663969 (2003).
  •  
  • 20. Shimoyama N, Koyano S, Takahashi K, Japan Patent 128986B1 (2008).
  •  
  • 21. Ohta M, Yamazaki J, Tobita M, US Patent 0001292 (2007).
  •  
  • 22. Toyoda H, Kaneko T, Japan Patent 218771A (2008).
  •  
  • 23. Fujiwara H, Nakamura Y, Komiyama S, US Patent 0228339 (2007).
  •  
  • 24. Uchida Y, Fujiwara H, Nakamura Y, Ota T, Suzuki T, US Patent 7608315 (2009).
  •  
  • 25. Ohta M, US Patent 7439475 (2008).
  •  
  • 26. Lee JK, Park SM, Lee SW, Korea Patent 10-1556100 (2015).
  •  
  • 27. Macosko CW, RIM: Fundamentals of Reaction Injection Molding, VCH, New York, 1989.
  •  
  • 28. Ivin KJ, Mol JC, Olefin Metathesis and Metathesis Polymerization, Academic Press, San Diego, CA, 1997.
  •  
  • 29. Wu Z, Benedicto AD, Grubbs RH, Macromolecules, 26, 4975 (1993)
  •  
  • 30. Schwab P, Grubbs RH, Ziller JW, J. Am. Chem. Soc., 118(1), 100 (1996)
  •  
  • 31. Grubbs RH, Chang S, Tetrahedron, 54, 4413 (1998)
  •  
  • 32. Bielawski CW, Grubbs RH, Angew. Chem.-Int. Edit., 39, 2903 (2000)
  •  
  • 33. Scholl M, Ding S, Lee CW, Grubbs RH, Org. Lett., 1, 953 (1999)
  •  
  • 34. Ng H, Manaszloczower I, Shmorhun M, Polym. Eng. Sci., 34(11), 921 (1994)
  •  
  • 35. Matejka L, Houtoman C, Macosko CW, J. Appl. Polym. Sci., 30, 2787 (1985)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(6): 1058-1065

    Published online Nov 25, 2017

  • 10.7317/pk.2017.41.6.1058
  • Received on Jun 29, 2017
  • Accepted on Jul 13, 2017