Article
  • Temperature Effects on the Shell Structure of Micelles Formed by a Polystyrene-Poly(ethylene oxide) Diblock Copolymer in Water
  • Kim EJ, Lee EJ, Lee KH
  • 폴리스티렌-폴리에틸렌옥사이드 이중블록공중합체 미셀의 쉘 구조에 대한 온도 효과
  • 김은진, 이은지, 이광희
Abstract
The temperature effects on the shell structure of micelles formed by a deuterated polystyrene-poly(ethylene oxide) diblock copolymer (dPS-b-PEO) in aqueous solution were investigated with small-angle neutron scattering (SANS). SANS data was analyzed using a core-shell model with a structure factor for a hard sphere potential. The shell thickness was obtained from the fits to the SANS data. The shell thickness first decreased with increasing temperature, reached minium at some point and then increased with a further increase of temperature. These structural changes seemed to be due to the combined effects of the decrease in hydrophilicity of the PEO block and the increase in thermal motion of the PEO block with increasing temperature.

중수소화 폴리스티렌-폴리에틸렌옥사이드 이중블록공중합체(dPS-b-PEO)로 형성된 미셀의 쉘 구조에 대한 온도 영향을 소각중성자산란(SANS)을 이용하여 수용액에서 조사하였다. SANS 데이터는 코어-쉘 모델에 hard sphere structure factor를 적용하여 분석하였으며, 산란 곡선 맞춤을 이용하여 쉘 두께를 구하였다. 온도 증가에 따라서 미셀의 쉘 두께는 감소하다가 특정 온도(~55 °C)를 넘어서면 증가하였다. 이러한 쉘 구조의 변화는 낮은 온도 영역에서는 온도 증가에 따른 PEO 블록의 친수성 감소가, 높은 온도 영역에서는 온도 상승에 따른 PEO 블록의 열운동 증가가 코로나 내의 수화 수준을 지배하였기 때문이다.

Keywords: small-angle neutron scattering; dPS-b-PEO; shell thickness; temperature effect

References
  • 1. Malmsen M, Lindman B, Macromolecules, 25, 5440 (1992)
  •  
  • 2. Zhao Y, You LY, Lu ZY, Sun CC, Polymer, 50(22), 5333 (2009)
  •  
  • 3. Zhang LF, Shen HW, Eisenberg A, Macromolecules, 30(4), 1001 (1997)
  •  
  • 4. Gil ES, Hudson M, Prog. Polym. Sci, 29, 1173 (2004)
  •  
  • 5. Kataoka K, Harada A, Nagasaki Y, Adv. Drug Deliv. Rev., 64, 37 (2012)
  •  
  • 6. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JH, J. Control. Release, 109, 169 (2005)
  •  
  • 7. Rosler A, Vandermeulen GWM, Klok HA, Adv. Drug Deliv. Rev., 64, 270 (2012)
  •  
  • 8. Dayananda K, He C, Park DK, Park TG, Lee DS, Polymer, 49(23), 4968 (2008)
  •  
  • 9. Chung YM, Simmons KL, Gutowska A, Jeong B, Biomacromolecules, 3(3), 511 (2002)
  •  
  • 10. Tempel M, Isenberg G, Sackmann E, Phys. Rev. E, 54, 1802 (1996)
  •  
  • 11. Bae SJ, Joo MK, Jeong Y, Kim SW, Lee WK, Sohn YS, Jeong B, Macromolecules, 39(14), 4873 (2006)
  •  
  • 12. Jeong B, Kim SW, Bae YH, Adv. Drug Deliv. Rev., 64, 154 (2012)
  •  
  • 13. Bhargava P, Tu YF, Zheng JX, Xiong HM, Quirk RP, Cheng SZD, J. Am. Chem. Soc., 129(5), 1113 (2007)
  •  
  • 14. Desai H, Varade D, Aswal VK, Goyal PS, Bahadur P, Eur. Polym. J., 42, 593 (2006)
  •  
  • 15. Brown GJ, Richards RW, Heenan RK, Polymer, 42(18), 7663 (2001)
  •  
  • 16. Teixeira J, J. Appl. Crystallogr., 21, 781 (1998)
  •  
  • 17. Chen SH, Ann. Rew. Phys. Chem., 37, 351 (1986)
  •  
  • 18. Schulz GV, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 43, 25 (1939)
  •  
  • 19. Mortensen K, Pedersen JS, Macromolecules, 26, 805 (1993)
  •  
  • 20. Kang BY, Choi MJ, Hwang KH, Lee KH, Jin BS, Polym. Korea, 33(5), 485 (2009)
  •  
  • 21. Callister WD, Fundamentals of Materials Science and Engineering, Von Hoffmann Inc., Danvers, 2004.
  •  
  • 22. Guinier A, Fournet G, Small-Angle Scattering of X-rays, Wiley, New York, 1955.
  •  
  • 23. Jeong B, Bae YH, Kim SW, Macromolecules, 32(21), 7064 (1999)
  •  
  • 24. Chung YM, Simmons KL, Gutowska A, Jeong B, Biomacromolecules, 3(3), 511 (2002)
  •  
  • 25. Nishinari K, Colloid Polym. Sci., 275, 1093 (1997)
  •  
  • 26. Lee DS, Kim MS, Lee HJ, Park I, Macromolecules, 22, 587 (2001)
  •  
  • 27. Israelachvili JN, Mitchell DJ, Ninham BW, J. Chem. Soc.-Faraday Trans., 2, 1525 (1976)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(6): 967-972

    Published online Nov 25, 2017

  • 10.7317/pk.2017.41.6.967
  • Received on Apr 5, 2017
  • Accepted on Jun 12, 2017