Article
  • Physical Properties of Crosslinked Foam of EVA/Olefin Block Copolymer/Clay Nanocomposite
  • Jeong EJ, Jeong HM
  • EVA/올레핀 블록공중합체/Clay 나노복합 가교 폼의 물리적 성질
  • 정은재, 정한모
Abstract
The crosslinked polyolefin foams of poly(ethylene-co-vinyl acetate) (EVA)/olefin block copolymer (OBC)/ clay nanocomposite were prepared to examine the effect of clay on the properties of the foam. The dispersed clay reduced the foam cell size and enhanced the expansion of the foam by nucleating effect. In addition, the gel content of the foam was increased, and the mechanical properties, such as modulus, tensile strength, and elongation at break, were improved by added clay. The dispersed clay reduced the polymer chain mobility and thus the tan δ peak height at glass transition temperature decreased and the peak extended to higher temperature region. The rebound resilence, sound absorption coefficient, and the ideal rubber elasticity exhibited at rubbery plateau were also reduced by the clay dispersed in the foam because of the restricted chain mobility of the matrix polymer.

에틸렌-비닐아세테이트 공중합체(EVA)와 올레핀 블록 공중합체(OBC)의 블렌드 물에 clay를 첨가한 나노복합재료를 발포하여, 가교 폴리올레핀 폼을 제조하고 물성을 조사하였다. Clay에 의한 기핵 효과로 폼의 셀 크기는 감소하였으며 발포 정도는 증가하였다. 또 clay는 폼의 젤 함량을 증가시키고, 모듈러스, 인장강도, 신도 등 기계적 물성들을 향상시켰다. 폼 중에 분산된 clay는 고분자 사슬의 기동성을 감소시켜 유리전이온도에서의 tan δ 피크가 더 높은 온도 영역까지 펼쳐지면서 높이가 감소하였고, 반발 탄성과 흡음성이 감소하였다. 또 clay는 rubbery plateau 영 역에서의 이상 고무 탄성 거동을 감소시켰다.

Keywords: poly(ethylene-co-vinyl acetate); olefin block copolymer; foam; clay; nanocomposite

References
  • 1. Kim DW, Park KW, Chowdhury SR, Kim GH, J. Appl. Polym. Sci., 102(4), 3259 (2006)
  •  
  • 2. Lopattananon N, Julyanon J, Mass A, Kaesaman A, Thongpin C, Sakai T, J. Vinyl Addit. Technol., 21, 134 (2015)
  •  
  • 3. Ma J, Deng F, Xue C, Duan Z, J. Reinf. Plast. Compos., 31, 1170 (2012)
  •  
  • 4. Web site; https://en.wikipedia.org/wiki/Ethylene-vinyl_acetate(accessed: February 21th, 2017).
  •  
  • 5. Park KW, Kim GH, Chowdhury SR, Polym. Eng. Sci., 48(6), 1183 (2008)
  •  
  • 6. Maiti M, Jasra RV, Kusum SK, Chaki TK, Ind. Eng. Chem. Res., 51(32), 10607 (2012)
  •  
  • 7. Yu DR, Kim GH, J. Appl. Polym. Sci., 121(6), 3696 (2011)
  •  
  • 8. Xu ZR, Park HY, Kim HY, Seo KH, Macromol. Symp., 264, 18 (2008)
  •  
  • 9. Web site; http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0916/0901b80380916847.pdf?filepath= elastomers/pdfs/noreg/788-10701.pdf&fromPage=GetDoc (accessed: February 21th, 2017).
  •  
  • 10. Web site; http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08ff/0901b803808ffb16.pdf?filepath=elastomers/pdfs/noreg/788-09901.pdf&fromPage=GetDoc (accessed: February 21th, 2017).
  •  
  • 11. Jeong EJ, Lee HS, Jeong HM, Polym. Korea, 41(4), 579 (2017)
  •  
  • 12. Web site; http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08ec/0901b803808ec74f.pdf?filepath=elastomers/pdfs/noreg/777-04901.pdf&fromPage=GetDoc (accessed: February 21th, 2017).
  •  
  • 13. Zhao Y, Zhu Y, Sui G, Chen F, Zhang Q, Fu Q, RSC Adv., 5, 82535 (2015)
  •  
  • 14. Lin YJ, Marchand GR, Hiltner A, Baer E, Polymer, 52(7), 1635 (2011)
  •  
  • 15. Haider S, Kausar A, Muhammad B, Polym. -Plast. Technol. Eng., 55, 723 (2016)
  •  
  • 16. Okada A, Usuki A, Macromol. Mater. Eng., 291, 1449 (2006)
  •  
  • 17. Lee KS, Jeong HM, Polym. Korea, 40(5), 797 (2016)
  •  
  • 18. Park SM, Kim MH, Park OO, Macromol. Res., 24(9), 777 (2016)
  •  
  • 19. Yun YH, Yun JW, Yoon SD, Byun HS, Macromol. Res., 24(1), 51 (2016)
  •  
  • 20. Wang L, Zhou H, Wang X, Mi J, J. Phys. Chem., 120, 26841 (2016)
  •  
  • 21. Yousefzade O, Hemmati F, Garmabi H, Mahdavi M, eXPRESS Polym. Lett., 9, 932 (2015)
  •  
  • 22. Wilson R, George SM, Maria HJ, Plivelic TS, Kumar A, Thomas S, J. Phys. Chem., 116, 2002 (2012)
  •  
  • 23. Shao L, Ji ZY, Ma JZ, Xue CH, Deng FQ, Polym. Bull., 74(2), 413 (2017)
  •  
  • 24. Kwon HM, Kim Y, Choi SS, Bae JW, Kim JS, Asian J. Chem., 25, 5289 (2013)
  •  
  • 25. Chang YW, Lee D, Bae SY, Polym. Int., 55, 184 (2006)
  •  
  • 26. Lee CM, Wang YS, J. Sound Vib., 298, 350 (2006)
  •  
  • 27. Riahinezhad M, Ghasemi I, Karrabi M, Azizi H, J. Vinyl Addit. Technol., 16, 229 (2010)
  •  
  • 28. Sims GLA, Sipaut CS, Cell. Polym., 20, 255 (2001)
  •  
  • 29. Sipaut CS, Mansa RF, Yugis AR, Ibrahim MNM, Ariff ZM, Abdullah AA, Cell. Polym., 31, 145 (2012)
  •  
  • 30. BYK, CLOISITE 20, BYK-Chemie GmbH, Germany, 2013.
  •  
  • 31. Nielsen LE, Polymer Rheology, Marcel Dekker, Inc., New York, 1977.
  •  
  • 32. Cogswell FN, Polymer Melt Rheology, John Wiley & Sons, New York, 1981.
  •  
  • 33. Mohammadian Z, Rezaei M, Azdast T, J. Thermoplast Compos. Mater., 29, 1229 (2016)
  •  
  • 34. Tai HJ, J. Polym. Res., 12, 457 (2005)
  •  
  • 35. Raja PR, Wilson JK, Peters MA, Croll SG, J. Appl. Polym. Sci., 130(4), 2624 (2013)
  •  
  • 36. Pimbert S, Stevenson I, Seytre G, Boiteux G, Cassagnau P, Macromol. Symp., 222, 239 (2005)
  •  
  • 37. Liu H, Han C, Dong L, Polym. Compos., 31, 1653 (2010)
  •  
  • 38. Lee JY, Su KE, Chan EP, Zhang QL, Ernrick T, Crosby AJ, Macromolecules, 40(22), 7755 (2007)
  •  
  • 39. Ma J, Duan Z, Xue C, Deng F, J. Thermoplast. Compos. Mater., 26, 555 (2012)
  •  
  • 40. Verdejo R, Saiz-Arroyo C, Carretero-Gonzalez J, Barroso-Bujans F, Rodriguez-Perez MA, Lopez-Manchado MA, Eur. Polym. J., 44, 2790 (2008)
  •  
  • 41. Sun X, Liang W, Composites Part B., 87, 21 (2016)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(6): 926-934

    Published online Nov 25, 2017

  • 10.7317/pk.2017.41.6.926
  • Received on Mar 24, 2017
  • Accepted on May 31, 2017