Article
  • Effect of Crystallization Behavior on Processing Characteristics of SLS 3-D Printing
  • Kim JO, Park JB, Lee DH, Kang HJ
  • 결정화 거동이 SLS 3-D 프린팅 가공 특성에 미치는 영향
  • 김재옥, 박정빈, 이동현, 강호종
Abstract
The effect of crystallization behavior, which caused the change of thermal properties and dimensional stability in nylon and polyketone, on the characteristics of SLS (selective laser sintering) 3-D printing process was studied. The increase of cold crystallization temperature and lowering of crystallinity and crystallite size were found by addition of nucleation agent. As a result, the processing window for SLS 3- D printing which was defined by the difference between melting temperature and cold crystallization temperature was narrowed. However, this caused the enhancement of dimensional stability in the layer made by laser sintering process and it was expected that the powder stacking difficulty due to the distortion of layer may be minimized in the repeated slicing process in SLS 3-D printing.

나일론과 폴리케톤의 결정화 거동에 따른 열적 특성과 치수안정성 변화가 SLS(selective laser sintering) 3-D프린팅 가공 특성에 미치는 영향을 살펴보았다. 기핵제 첨가에 의하여 냉 결정화 온도 증가, 결정화도 및 결정 크기감소와 같은 결정화 거동의 변화를 확인하였다. 냉 결정화 온도 증가는 융융 온도와 냉 결정화 온도의 차이로 나타내는 SLS 3-D 프린팅의 가공 윈도우 감소를 초래하나 결정화도 및 결정 크기 감소에 따른 치수안정성을 증가시킨다. 그 결과 SLS 3-D 프린팅 융착 공정에 의하여 만들어지는 성형 층의 균일성을 향상시켜 반복적인 적층을 위한분말 슬라이싱 공정에 있어서 치수 변형에 따른 문제점을 최소화할 수 있음을 확인하였다.

Keywords: SLS 3-D printing; crystallinity; nucleating agent; dimensional stability; processing window; additive

References
  • 1. Kruth JP, Wang X, Laoui T, Froyen L, Assembly Autom., 23, 357 (2003)
  •  
  • 2. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M, Rapid Prototyping J., 11, 26 (2005)
  •  
  • 3. Kumar S, J.O.M., 55, 43 (2003)
  •  
  • 4. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J, Rapid Prototyping J., 1, 26 (1995)
  •  
  • 5. Tang Y, Fuh JYH, Loh HT, Wong YS, Lu L, Mater. Des., 24, 623 (2003)
  •  
  • 6. Yoon KH, Shin DY, Kim YC, Polym. Korea, 36(2), 245 (2012)
  •  
  • 7. Aktiengesellschaft H, U.S. Patent 6,245,281 (2001).
  •  
  • 8. Goodridge RD, Tuck CJ, Hague RJM, Prog. Mater. Sci., 57(2), 229 (2012)
  •  
  • 9. Zarringhalam H, Majewski C, Hopkinson N, Rapid Prototyping J., 15, 126 (2009)
  •  
  • 10. Liao HT, Lee MY, Tsai WW, Wang HC, Lu WC, J. Tissue Eng. Regen. Med., 10, 337 (2016)
  •  
  • 11. Eosoly S, Brabazon D, Lohfeld S, Looney L, Acta Biomater, 6, 2511 (2010)
  •  
  • 12. Berretta S, Ghita O, Evans KE, Eur. Polym. J., 59, 218 (2014)
  •  
  • 13. Schmidt M, Pohle D, Rechtenwald T, CIRPAnn. Manuf. Technol., 56, 205 (2007)
  •  
  • 14. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW, Biomaterials, 24, 3115 (2003)
  •  
  • 15. Chatani T, Takizawa T, J. Polym. Sci., 55, 811 (1961)
  •  
  • 16. Lagaron JM, Vickers ME, Powell AK, Davidson NS, Polymer, 41(8), 3011 (2000)
  •  
  • 17. Stadlbauer M, Eder G, Janeschitz-Kriegl H, Polymer, 42(8), 3809 (2001)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(5): 798-803

    Published online Sep 25, 2017

  • 10.7317/pk.2017.41.5.798
  • Received on Feb 27, 2017
  • Accepted on Apr 10, 2017