Evaluation of Gelatin and Gellan Gum Blended Hydrogel for Cartilage Regeneration
Song JE, Song YS, Jeon SH, Choi IN, Kim CM, Khang GS
연골 재생을 위한 젤라틴과 젤란검을 혼합한 하이드로젤 평가
송정은, 송야성, 전성현, 최일남, 김초민, 강길선
Abstract
Gellan gum is a natural polysaccharide with good heat, acid and enzymes resistance, and widely used for tissue engineering application. However, one of the drawbacks of gellan gum is lower cell attachment. Hence, in this study, gelatin/ gellan gum (G/GG) hydrogels containing 0, 10, 20, and 30 wt% of gelatin per gellan gum weight were prepared for improvement of chondrocyte attachment efficiency. The mechanical and chemical properties of prepared G/GG hydrogel were evaluated using compression strength, scanning electron microscopy and FTIR. Also, the cellular proliferation and functional maintenance of chondrocytes in hydrogel was assessed by MTT analysis, and RT-PCR. The results showed that 20 wt% G/GG hydrogel was 1.058, 1.051 and 1.04 folds higher chondrocyte proliferation compared to 0, 10 and 30 wt% and Type-II collagen gene expression was 1.35, 1.21 and 1.16 folds at 21 days, respectively. Thus, 20 wt% G/GG hydrogel can be envisioned as a useful biomaterial for future cartilage regeneration applications.
천연 다당류인 젤란검은 내열성, 내산성, 내효소성이 우수하여, 널리 조직공학적으로 응용을 위해 사용된다. 그러나 젤란검은 낮은 세포 부착력을 갖는 단점이 있다. 따라서 본 연구에서는 연골 세포 부착 효율을 증진시키기 위해, 젤란검 무게당 0, 10, 20 및 30 wt%의 젤라틴이 포함된 젤라틴/젤란검(G/GG) 하이드로젤을 제작하였다. 제작된 G/GG 하이드로젤의 물리적, 화학적 특성을 평가하기 위해, 압축강도, SEM, FTIR을 평가하였다. 또한 하이드로젤에서 연골 세포의 세포 부착력 및 기능적 유지를 관찰하기 위하여, MTT, RT-PCR을 수행하였다. 그 결과, 21일에 20 wt% G/GG 하이드로젤의 연골 세포 증식률은 0, 10, 및 30 wt%의 G/GG 하이드로젤보다 1.058, 1.051 및 1.04배 높게 나타났으며, 타입 2 콜라겐 유전자 발현 역시 각각 1.35, 1.21 및 1.16배로 관찰되었다. 그러므로, 20 wt%G/GG 하이드로젤은 연골 재생을 위한 생체재료로 활용할 수 있을 것으로 기대된다.
2. Ren K, He C, Xiao C, Li G, Chen X, Biomaterials, 51, 238 (2015)
3. Lee D, Partington P, Orthop. Trauma, 30, 265 (2016)
4. Zhang KX, Yan SF, Li GF, Cui L, Yin JB, Biomaterials, 71, 24 (2015)
5. Fischer S, Kisser A, J. Orthop. Res., 13, 246 (2016)
6. Yasui Y, Ando W, Shimomura K, Koizumi K, Ryota C, Hamamoto S, Kobayashi M, Yoshikawa H, Nakamura N, J. Clin. Orthop. Trauma, 7, 157 (2016)
7. Zhang XL, Wu Y, Pan ZY, Sun H, Wang JJ, Yu DS, Zhu S, Dai J, Chen YS, Tian NF, Heng BC, Coen ND, Xu HZ, Ouyang HW, Acta Biomater, 42, 329 (2016)
8. Zhang Y, Yang F, Liu K, Shen H, Zhu Y, Zhang W, Liu W, Wang S, Cao Y, Zhou G, Biomaterials, 33, 296 (2012)
9. Mumme M, Barbero A, Miot S, Wixmerten A, Feliciano S, Wolf F, Asnaghi AM, Baumhoer D, Bieri O, Kretzschmar M, Pagenstert G, Haug M, Schaefer DJ, Martin I, Jakob M, Lancet, 388, 1985 (2016)
10. Kim IG, Ko J, Lee HR, Do SH, Park K, Biomaterials, 85, 18 (2016)
11. Kuo YC, Wang CC, Colloids Surf. B: Biointerfaces, 93, 235 (2012)
12. Zhang Q, Lu H, Kawazoe N, Chen G, Acta Biomater., 10, 2005 (2014)
13. Wang J, Yang Q, Cheng N, Tao X, Zhang Z, Sun X, Zhang Q, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 61, 705 (2016)
14. Song JE, Kim AR, Lee CJ, Tripathy N, Yoon KH, Lee D, Khang G, J. Biomater. Sci.-Polym. Ed., 26, 181 (2015)
15. Kang JY, Chung CW, Sung JH, Park BS, Choi JY, Lee SJ, Choi BC, Shim CK, Chung SJ, Kim DD, Int. J. Pharm., 369, 114 (2009)
16. Khang G, Lee SK, Kim HN, Silva-Correia J, Gomes ME, Viegas CA, Dias IR, Oliveira JM, Reis RL, J. Tissue Eng. Regen. Med, 9, 265 (2015)
17. Park H, Kim HY, Kwon SY, Khang G, Kim YS, Polym. Korea, 39(1), 144 (2015)
18. Oliveira JT, Martins L, Picciochi R, Malafaya IB, Sousa RA, Neves NM, Mano JF, Reis RL, J. Biomed. Mater. Res., 93A, 852 (2010)
19. Balakrishnan B, Joshi N, Jayakrishnan A, Banerjee R, Acta Biomater., 10, 3650 (2014)