Article
  • Property Changes of the Waterborne Polyurethane Films Synthesized from Polytetramethylene Ether Glycol and Polycarbonate Diol Due to Hydrolysis
  • Mun SY, Jung MC, Kim YH
  • 폴리테트라메틸렌 에테르 글리콜과 폴리카보네이트 디올로부터 합성한 수분산 폴리우레탄 필름의 가수분해에 의한 특성 변화
  • 문선영, 정명철, 김영호
Abstract
Waterborne polyurethanes (WPUs) using polytetramethylene ether glycol (PTMEG) or polycarbonate (PC) diol for polyol component with isophorone diisocyanate and dimethylol butanoic acid were synthesized and the mechanical and morphological properties of the WPU films and of the ones hydrolyzed in an autoclave were analyzed. PTMEGWPU film showed a lower tensile stress-at-break than that of PC-WPU film. However, the relative stress retention of the former was higher than that of the latter when they were hydrolyzed at 120 °C for the same time. PTMEG-WPU films exhibited irregular surfaces with microparticles before hydrolysis. Many pores were formed in them after hydrolysis, the pore size being increased with increasing hydrolysis time. On the other hand, particle or pore formation was not observed for PC-WPU films both before and after hydrolysis. PU films prepared from N-methyl-2-pyrrolidone solution showed a lower tensile stress and worse hydrolysis behavior compared to the ones obtained from water dispersion.

이소포론 디이소시아네이트와 디메틸올 부타노산을 사용하면서 폴리테트라메틸렌 에테르 글리콜(PTMEG)과 폴리카보네이트(PC) 디올을 각각 폴리올로 사용한 수분산 폴리우레탄(WPU) 수지를 합성한 후 필름으로 만들고, 이들을 120 °C의 오토클레이브에서 가수분해시킨 시료들의 기계적 물성과 모폴로지 변화 등을 만능시험기, 주사전자 현미경, FTIR 등의 기기를 사용하여 분석하였다. 동일 가수분해 조건에서 PTMEG-WPU 시료가 PC-WPU 시료보다 더 높은 파단응력 유지율을 나타내었으며, PTMEG-WPU는 필름 제조과정에서 입자들을 형성하며 가수분해가 진행 됨에 따라 기공이 생성되면서 점차 기공의 크기가 커졌지만 PC-WPU는 가수분해가 진행되더라도 기공이 생성되지 않았다. 합성된 PU 시료를 N-메틸-2-피롤리돈(NMP)에 용해시켜 얻은 필름들의 가수분해 전후 특성을 분석한 결과, 이들은 수분산 시료들에 비해 파단응력이 떨어지고 가수분해도 더 잘 되었다.

Keywords: polytetramethylene ether glycol; polycarbonate diol; waterborne polyurethane (WPU) film; hydrolysis; mechanical property; morphology

References
  • 1. Kesslmeier J, Staudt M, J. Atmos. Chem., 33, 23 (1999)
  •  
  • 2. Wang S, Ang HM, Tade MO, Environ. Int., 33, 694 (2007)
  •  
  • 3. Birnbrich BV, Prog. Org. Coat., 29, 31 (1996)
  •  
  • 4. Ley DA, Fiori DE, Quinn RJ, Prog. Org. Coat., 35, 109 (1999)
  •  
  • 5. Du Y, Yang Z, Zhou C, Macromol. Res., 23(9), 867 (2015)
  •  
  • 6. Lee SS, Lee SH, Lee DS, Polym. Korea, 30(2), 152 (2006)
  •  
  • 7. Xiao Y, Juj X, Liu Z, Jiang L, Lei J, Green Chem., 18, 412 (2016)
  •  
  • 8. Kojio K, Mitsui Y, Furukawa M, Polymer, 50(15), 3693 (2009)
  •  
  • 9. Subramani S, Lee JM, Cheong IW, Kim JH, J. Appl. Polym. Sci., 98(2), 620 (2005)
  •  
  • 10. Chen XD, Yi YH, Adv. Mater., 549, 17 (2012)
  •  
  • 11. MS(Material Specification) 256-26, Hyundai Motors Co.
  •  
  • 12. Socrates G, Infrared and Raman Characteristic Group Frequencies, John Wiley & Sons, New York, p 115 (2004).
  •  
  • 13. Lijie H, Yongtao D, Zhiliang Z, Zhongsheng S, Zhihua S, Colloids Surf. A: Physicochem. Eng. Asp., 467, 46 (2015)
  •  
  • 14. Sonnenschein MF, Polyurethanes: Science, Technology, Markets, and Trends, John Wiley and Sons, New Jersey, USA, p 11 (2015).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(3): 546-553

    Published online May 25, 2017

  • 10.7317/pk.2017.41.3.546
  • Received on Feb 4, 2017
  • Accepted on Apr 2, 2017