Article
  • Properties of Reactive Silicone Rubber Modified Epoxy Resins 2: Thermal, Mechanical, and Morphological Properties
  • Hong YG, Lee SM
  • 반응성 실리콘 고무로 개질된 에폭시 수지의 특성 2: 열적, 기계적 물성 및 모폴로지
  • 홍영기, 이상묵
Abstract
Cycloaliphatic epoxy resins were modified with amino group terminated silicone rubber and cured with cycloaliphatic anhydride. Thermal, mechanical properties and morphology of the epoxy resins were investigated by TGA, DMA, UTM, impact tester, and SEM. Thermal stability, flexibility, tensile, flexural, and impact strengths of the epoxy resins increased with increasing silicone rubber content. The tensile, flexural, and impact strength has a maximum value at 5~10 wt% of silicone rubber content. The morphology revealed that the impact strength increase was due to the flexible siloxane segment introduced into epoxy network, which caused the rough fractured surface and absorbed the impact energy. Therefore it was thought that the epoxy resins with improved thermal and mechanical properties as well as good weatherability can be manufactured by adding a small amount of the reactive silicone rubber into the cycloaliphatic epoxy resins.

말단에 아민기를 갖는 액상 실리콘 고무로 지환형 에폭시 수지를 개질한 후 지환형 산무수물로 경화시켰다. 제조된 에폭시 수지의 열적, 기계적 물성 및 모폴로지를 TGA, DMA, UTM, impact tester, SEM을 이용하여 조사하였는데 실리콘 고무 함량이 증가함에 따라 열안정성, 유연성, 인장강도, 굴곡강도 및 충격강도가 증가하였다. 인장, 굴곡 및 충격강도는 실리콘 고무 함량이 5~10 wt% 일 때 최대값을 보였다. 모폴로지를 관찰한 결과 충격강도의 증가는 에폭시 망상구조에 유연한 실록산 분절이 도입됨으로써 파단시 거친 표면을 생성시켜 충격 에너지를 흡수하는데 기인한다고 판단되었다. 이에 반응성 실리콘 고무를 지환형 에폭시수지에 소량 첨가함으로써 우수한 내후성은 물론 개선된 열적, 기계적 특성을 갖는 갖는 에폭시 수지를 제조할 수 있으리라 사료된다.

Keywords: silicone rubber; cycloaliphatic epoxy; cycloaliphatic anhydride; weatherability; impact modified

References
  • 1. Kar S, Banthia AK, J. Appl. Polym. Sci., 96(6), 2446 (2005)
  •  
  • 2. Dhevi DM, Jaisankar SN, Pathak M, Eur. Polym. J., 49, 3561 (2013)
  •  
  • 3. Jung KC, Roh IT, Chang SH, Compos. Struct., 119, 195 (2015)
  •  
  • 4. Li R, Zhou C, Chen Y, Zou H, Liang M, Li Y, High Perform. Polym., 29, 36 (2016)
  •  
  • 5. Meng Y, Chu J, Xue J, Liu C, Wang Z, Zhang L, RSC Adv., 4, 31249 (2014)
  •  
  • 6. Hong YG, Lee S, Yoo YJ, Lee JW, Polym. Korea, 41(2), 260 (2017)
  •  
  • 7. Yaday M, Rhee KY, Carbohydr. Polym., 90, 165 (2012)
  •  
  • 8. Horowitz H, Metzger G, Anal. Chem., 35, 1464 (1963)
  •  
  • 9. Doyle CD, Anal. Chem., 33, 77 (1961)
  •  
  • 10. Park SJ, Cho MS, Lee JR, Polym. Korea, 23(2), 305 (1999)
  •  
  • 11. Xie Y, Hill CAS , Xiao Z, Militz H, Mai C, Compos. Pt. A-Appl. Sci. Manuf., 41, 806 (2010)
  •  
  • 12. Tan SG, Chow WS, Polym. -Plast. Technol. Eng., 49, 1581 (2010)
  •  
  • 13. Wang R, Schuman TP, Expr. Polym. Lett., 7, 272 (2013)
  •  
  • 14. Gerard JF, Galy J, Pascault JP, Cukierman S, Halary L, Polym. Eng. Sci., 31, 615 (1991)
  •  
  • 15. Unsworth J, Li Y, J. Appl. Polym. Sci., 46, 1375 (1992)
  •  
  • 16. Hill LW, J. Coat. Technol., 64, 29 (1992)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(3): 539-545

    Published online May 25, 2017

  • 10.7317/pk.2017.41.3.539
  • Received on Feb 4, 2017
  • Accepted on Feb 25, 2017