Article
  • Characteristics of Polyurethane Composites Containing Polyurethane Grafted Multi-walled Carbon Nanotubes
  • Choi EY, Kim SW, Lee JY, Ha JH, Kim CK
  • 폴리우레탄이 그래프트된 다중벽 탄소나노튜브가 포함된 폴리우레탄 복합소재의 특성
  • 최은엽, 김성원, 이재영, 하지훈, 김창근
Abstract
Thermoplastic polyurethane elastomer (TPU) and multi-walled carbon nanotubes (MWCNTs) functionalized with isocyanate groups were melt mixed in a twin extruder to produce TPU composites containing TPU grafted MWCNTs (TPU-g-MWCNT) by reacting isocyanate groups on MWCNTs with the hydroxyl groups in TPU. Formation of TPU-g-MWCNTs by reactive extrusion was explored as were their resulting properties including interfacial adhesion energies between TPU and MWCNT and mechanical properties of TPU/MWCNT composites. The interfacial adhesion energy of the TPU/TPU-g-MWCNT composite was higher than that of the TPU/pristine MWCNT composite; a result, the TPU/TPU-g-MWCNT composite exhibited a higher level of dispersion of MWCNTs in the TPU matrix and better adhesion at the interface between TPU and MWCNTs than the TPU/pristine MWCNT composite. For a fixed MWCNT content in the composite, the mechanical strength of the TPU/TPU-g-MWCNT composite was higher than those of the corresponding TPU/pristine MWCNT composite.

열가소성 폴리우레탄 탄성체(TPU)와 TPU가 그래프트된 다중벽 탄소나노튜브(MWCNT)의 (TPU-g-MWCNT) 복합체를 제조하기 위해 TPU와 이소시아네이트기로 기능화된 MWCNT를 이축 압출기를 사용하여 융 압출하였다. MWCNT에 형성된 이소시아네이트기와 TPU에 존재하는 하이드록실기가 용융 압출 동안 반응하여 TPU-g-MWCNT 가 형성됨을 계면 접착 에너지 변화, 복합체의 기계적 물성 변화 등으로 확인하였다. TPU와 TPU-g-MWCNT 간의 계면 접착 에너지 값이 TPU와 화학 처리 전 MWCNT간의 값에 비해 높았다. 이 결과로 TPU/TPU-g-MWCNT 복합체가 TPU/화학처리 전 MWCNT 복합체보다 향상된 MWCNT 분산과 계면 접착을 나타내었다. 일한 MWCNT 함량에서 TPU/TPU-g-MWCNT 복합체가 TPU/화학처리 전 MWCNT 복합체보다 높은 기계적 강도를 나타내었다.

Keywords: polyurethane; multi-walled carbon nanotube; surface modification; composite

References
  • 1. Sumio I, Nature, 354, 56 (1991)
  •  
  • 2. Wong EW, Sheehan PE, Lieber CM, Science, 277(5334), 1971 (1997)
  •  
  • 3. Coleman JN, Khan U, Blau WJ, Gunko YK, Carbon, 44, 1624 (2006)
  •  
  • 4. Fiedeler B, Gojny FH, Compos. Sci. Technol., 66, 3115 (2006)
  •  
  • 5. Wang X, Jiang Q, Xu W, Cai W, Inoue Y, Zhu Y, Carbon, 53, 145 (2013)
  •  
  • 6. Sperling LH, Introduction to Physical Polymer Science, Wiley & Sons, New York, 1986.
  •  
  • 7. Cho M, Choi CS, Lee SJ, Yoon SW, Koo JC, Lee Y, Polym. Korea, 34(2), 104 (2010)
  •  
  • 8. Potschke P, Fornes TD, Paul DR, Polymer, 43(11), 3247 (2002)
  •  
  • 9. Choi WS, Ryu SH, Colloids Surf., 375, 55 (2011)
  •  
  • 10. Eitan A, Fisher FT, Andrew R, Brinson LC, Schadler LS, Compos. Sci. Technol., 66, 1162 (2006)
  •  
  • 11. Maiti S, Khatua BB, Nanosci. Technol., 11, 8613 (2011)
  •  
  • 12. Guo JX, Liu YJ, Prada-Silvy R, Tan YQ, Azad S, Krause B, Potschke P, Grady BP, J. Polym. Sci. B: Polym. Phys., 52(1), 73 (2014)
  •  
  • 13. Roh SC, Choi EY, Choi YS, Kim CK, Polymer, 55(6), 1527 (2014)
  •  
  • 14. Cho YK, Lee WK, Polym. Korea, 40(3), 439 (2016)
  •  
  • 15. Carrol BJ, J. Colloid Interface Sci., 57, 488 (1976)
  •  
  • 16. Song BH, Bismarck A, Tahhan R, Springer J, J. Colloid Interface Sci., 197(1), 68 (1998)
  •  
  • 17. Young T, Phil. Trans. R. Soc. Lond., 95, 65 (1805)
  •  
  • 18. Busscher HJ ,Van Pelt AWJ, De Jong HP, Arends J, J. Colloid Interface Sci., 95, 23 (1983)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(3): 490-494

    Published online May 25, 2017

  • 10.7317/pk.2017.41.3.490
  • Received on Nov 4, 2016
  • Accepted on Dec 4, 2016