Article
  • Preparation and Evaluation of Waterborne Polyurethane Encapsulating Stearyl Alcohol as a Shape-Stabilized Phase Change Material
  • Lee JM, Jeong JH, Dao TD, Jeong HM
  • 스테아릴알코올을 담지한 수분산폴리우레탄 입자의 제조와 열저장 물질로의 응용
  • 이준모, 정진환, Dao TD, 정한모
Abstract
The stearyl alcohol was encapsulated with waterborne polyurethane (WPU) to prepare a shape-stabilized phase change materials (PCMs) containing stearyl alcohol up to 50 wt%. The particle size analysis and the morphology observed by scanning electron microscope showed that the encapsulated particle size was several micrometers. Thermogravimetric analysis demonstrated that the stearyl alcohol was effectively encapsulated by WPU with marginal loss. The heat of fusion of the particle encapsulating 30 wt% stearyl alcohol was 90-100 J/g, which was larger compared with those of previous reports on PCMs encapsulated by polyurethanes. The shape-stability of stearyl alcohol above melting temperature was evidently improved by the encapsulation with WPU.

형태 안정성를 갖는 상전이 물질을 제조하기 위하여 결정화 및 용융에 따른 잠열이 큰 스테아릴알코올을 수 분산폴리우레탄에 최대 50 wt% 담지한 입자를 물속에서 제조하였다. 냉동건조된 담지 입자가 수 μm 크기를 가지는 것을 입도분석, 그리고 주사전자현미경으로 관찰하였다. 열중량분석 결과, 투입된 스테아릴알코올 손실이 거의 없이 효과적으로 수분산폴리우레탄에 담지되었다. 열적 성질들을 시차주사열량계로 분석한 결과, 스테아릴알코올을 30 wt% 담지한 경우 용융열이 90-100 J/g 수준으로, 이전에 보고된 저분자 상전이물질을 담지한 폴리우레탄들의 다 른 결과들에 비해 높은 값들을 가졌다. 또한 스테아릴알코올의 녹는점 이상에서의 형태 안정성은 수분산폴리우레탄 에 담지됨으로써 크게 향상되었다.

Keywords: stearyl alcohol; waterborne polyurethane; encapsulate; phase change material; shape-stabilized

References
  • 1. Pielichowska K, Pielichowski K, Prog. Mater. Sci., 65(-), 67 (2014)
  •  
  • 2. Oro E, de Gracia A, Castell A, Farid MM, Cabeza LF, Appl. Energy, 99(-), 513 (2012)
  •  
  • 3. Sharma A, Tyagi VV, Chen CR, Buddhi D, Renew. Sust. Energ. Rev., 13, 318 (2009)
  •  
  • 4. Yuan Y, Zhang N, Tao W, Cao X, He Y, Renew. Sust. Energ. Rev., 29, 482 (2014)
  •  
  • 5. Dheep GR, Sreekumar A, Energy Conv. Manag., 83(-), 133 (2014)
  •  
  • 6. Giro-Paloma J, Martinez M, Cabeza LF, Fernandez AI, Renew. Sust. Energ. Rev., 53, 1059 (2016)
  •  
  • 7. Su W, Darkwa J, Kokogiannakis G, Renew. Sust. Energ. Rev., 48, 373 (2015)
  •  
  • 8. Liu C, Rao Z, Zhao J, Huo Y, Li Y, Nano Energy, 13, 814 (2015)
  •  
  • 9. Jacob R, Bruno F, Renew. Sust. Energ. Rev., 48, 79 (2015)
  •  
  • 10. Fang G, Tang F, Cao L, Renew. Sust. Energ. Rev., 40, 237 (2014)
  •  
  • 11. Chen K, Liu RW, Zou C, Shao QY, Lan YJ, Cai XQ, Zhai LL, Sol. Energy Mater. Sol. Cells, 130(-), 466 (2014)
  •  
  • 12. Pielichowska K, Nowak M, Szatkowski P, Macherzynska B, Appl. Energy, 162(-), 1024 (2016)
  •  
  • 13. Aydin AA, Chem. Eng. J., 231(-), 477 (2013)
  •  
  • 14. Tang BT, Wang LJ, Xu YJ, Xiu JH, Zhang SF, Sol. Energy Mater. Sol. Cells, 144(-), 1 (2016)
  •  
  • 15. Kwon JY, Kim HD, Fiber. Polym., 17, 12 (2006)
  •  
  • 16. Su JF, Wang LX, Ren L, Colloids Surf. A: Physicochem. Eng. Asp., 299, 268 (2007)
  •  
  • 17. Guo Y, Li S, Wang G, Ma W, Huang Z, Prog. Org. Coat., 74, 248 (2012)
  •  
  • 18. Kim EY, Do Kim H, J. Appl. Polym. Sci., 96(5), 1596 (2005)
  •  
  • 19. Yoo HJ, Kim EY, Kim HD, Polym. Polym. Compos., 15, 255 (2007)
  •  
  • 20. Chen BQ, Evans JRG, Macromolecules, 39(2), 747 (2006)
  •  
  • 21. Liu JY, Reni L, Wei Q, Wu JL, Liu S, Wang YJ, Li GY, Express Polym. Lett., 5, 742 (2011)
  •  
  • 22. Yavari F, Fard HR, Pashayi K, Rafiee MA, Zamiri A, Yu Z, Ozisik R, Borca-Tasciuc T, Koratkar N, J. Phys. Chem. C, 115, 8753 (2011)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(3): 471-479

    Published online May 25, 2017

  • 10.7317/pk.2017.41.3.471
  • Received on Oct 29, 2016
  • Accepted on Dec 19, 2016