The biological machine was designed to self-transform using a multi-layered hydrogel. The biological machine legs consisting of two layers with different swelling ratios were fabricated to have 5.3 mm of radius of curvature by selffolding assembly at 37 °C. The hydrogels patterned with three different geometries by the micro-contact printing could influence the differentiation process and alignment of C2C12 skeletal myoblasts. The cells on the linear patterns resulted in the 3.6-fold increase of the contractile force with 1.12±0.30 μN, as compared to the cells on the circle patterns with 0.31±0.32 μN of contractile force. Overall, this new strategy to prepare the biological machine with the multi-layered hydrogel would be actively used in drug delivery, tissue engineering, environmental engineering, and biomimetic engineering, etc.
다층 하이드로젤을 사용하여 자가변환이 가능한 생체로봇을 설계하였다. 온도에 따른 팽윤비 차이를 이용하여 37 °C에서 자가접힘에 의해 5.3 mm의 곡률반경을 갖는 생체로봇의 다리 부분을 제조하였다. 미세접촉프린팅 (μCP) 방법으로 세 가지 다른 형태로 파이브로넥틴이 패턴된 하이드로젤을 제조하여 근관세포로의 분화 및 정렬에 미치는 영향을 확인하였다. 생체로봇은 3D printer를 이용하여 다리부분은 두 층으로 몸통부분은 단층으로 구성된 3차원 구조로 제조하였다. 다리부분에 원형 패턴으로 분화된 근관세포의 수축력은 0.31±0.32 μN 값을 보인 반면, 100 μm 두께의 선형 패턴으로 분화된 근관세포의 수축력은 1.12±0.30 μN 값을 보여 약 3.6배 강한 것을 확인할 수 있었다. 다층 하이드로젤 기반의 자가변환 생체로봇은 약물전달, 조직공학, 환경공학 및 생체모방공학 분야에 다양하게 활용될 수 있다.
Keywords: hydrogel; biological machine; self-folding; contractile force