Article
  • Influence of Oxidized Starch and Modified Nano-SiO2 on Performance of Urea-Formaldehyde (UF) Resin
  • Wu L, Guo J, Zhang Z, Zhao S
  • 산화전분과 표면개질된 나노 SiO2가 Urea-Formaldehyde 수지의 성능에 미치는 영향
Abstract
In this work, the nano-SiO2 was firstly modified by silane coupling agent (3-aminopropyltriethoxysilane), meanwhile the dispersion of nanoparticles was studied with transmission electron microscope (TEM). Then urea-formaldehyde (UF) resins were synthesized and modified with the compound modifier made of different ratio of modified nano-SiO2 and oxidized starch. All the products were characterized with Fourier transform infrared spectroscopy (FTIR). Free formaldehyde content and bonding strength were measured as the main standard of the performance of the resin. The other performances of modified UF resins were also analysized by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results showed that the modification could effectively reduce the free formaldehyde content, from 0.49 to 0.19%, and enhance the bonding strength, from 0.90 to 2.06 MPa.

Keywords: urea-formaldehyde resin; silane coupling agent; oxidized starch; free formaldehyde content; nano-SiO2

References
  • 1. Nuryawan A, Singh AP, Park BD, Causin V, J. Adhes., 92(2), 121 (2016)
  •  
  • 2. Gao W, Du GB, Kamdem DP, J. Adhes., 91(3), 186 (2015)
  •  
  • 3. Arif N, Park BD, Adya PS, J. Therm. Anal. Calorim., 118, 397 (2014)
  •  
  • 4. Ping Q, Hongying H, Guofeng W, Enhui S, Zhizhou C, J. Adhes. Sci. Technol., 21, 2381 (2015)
  •  
  • 5. Jovanovic V, Samarzija-Jovanovic S, Petkovic B, Dekic V, Markovic G, Marinovic-Cincovic M, RSC Adv., 5, 59715 (2015)
  •  
  • 6. Jun Y, Teng Q, Haiqiao W, Longhai G, Xiaoyu L, J. Appl. Polym. Sci., 10, 4896 (2013)
  •  
  • 7. Shiwei C, Xuchen L, Tizhuang W, Zhimin Z, Particuology, 24, 203d (2016)
  •  
  • 8. Park BD, Causin V, Eur. Polym. J., 49, 532 (2013)
  •  
  • 9. Park BD, Kang EC, Park JY, J. Appl. Polym. Sci., 101(3), 1787 (2006)
  •  
  • 10. No BY, Kim MG, J. Appl. Polym. Sci., 106(6), 4148 (2007)
  •  
  • 11. Jin SW, Yu KH, Kim HI, Polym. Korea, 28(6), 487 (2004)
  •  
  • 12. Yang YK, Hwang TS, Hwang EH, Polym. Korea, 30(2), 129 (2006)
  •  
  • 13. Lee S, Lee S, Lim H, Kye H, Lee Y, Polym. Korea, 30(6), 532 (2006)
  •  
  • 14. Lee MS, Ryu H, Cho UR, Polym. Korea, 34(1), 58 (2010)
  •  
  • 15. Rong ZY, Li WX, Ming ZG, Zhong WY, Carbohydr. Polym., 87, 2554 (2012)
  •  
  • 16. Yanhua Z, Longlong D, Jiyou G, Carbohydr. Polym., 22, 32 (2015)
  •  
  • 17. Yunfei Z, Chenghua Y, Yinwen L, Liyan L, Mangeng L, J. Polym. Res., 21, 374 (2014)
  •  
  • 18. Siimer K, Christjanson P, Kaljuvee T, Pehk T, Lasn I, Saks I, J. Therm. Anal. Calorim., 92, 19 (2008)
  •  
  • 19. Roumeli E, Papadopoulou E, Pavlidou E, Vourlias G, Bikiaris D, Paraskevopoulos KM, Chrissafis K, Thermochim. Acta, 527(-), 33 (2012)
  •  
  • 20. Xiaofeng Z, Enguang X, Ruihang L, Xiaobo W, Zhenzhong G, J. Appl. Polym. Sci., 10, 40202 (2014)
  •  
  • 21. Xiaofang Y, Ximing W, Acta Polymerica Sinica, 9, 1286 (2014)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(1): 83-89

    Published online Jan 25, 2017

  • 10.7317/pk.2017.41.1.83
  • Received on Jul 5, 2016
  • Accepted on Sep 6, 2016