Article
  • Polymer Powder Sintering by CO2 Laser for 3D Printing
  • Park J, Kim J, Lee DH, Kang HJ
  • CO2 레이저 융착에 의한 고분자 분말 3D 프린팅
  • 박정빈, 김재옥, 이동현, 강호종
Abstract
The effects of polymer powder sintering by CO2 laser printing on the shaping accuracy and dimensional stability of produced samples were investigated in selective laser sintering (SLS) 3D printing. It was found that the laser sintering resulted in both the surface fusion and melting between closely contacted powders. Increasing the energy density by laser power, scan speed, and scan spacing caused the enhancement in the density and dimensional stability of samples due to the increase of melting process of powders. However, it caused the lowering of dimensional accuracy in shaping such as the obtained width and thickness in 3D printing, and then the difficulty of powders slicing for next lay-up process was found.

레이저 융착에 의한 3D 프린팅 가공 시, CO2 레이저 융착 조건이 구조체 형성 정밀성 및 치수 안정성에 미치는 영향을 살펴보았다. SLS 3D 프린팅 가공에 의한 구조체는 가공조건에 따라 분말/분말 근접 계면 융착 및 융융에 의하여 형성됨을 알 수 있었으며 레이저 파워, 스캔속도, 스캔간격에 의한 에너지 밀도가 증가될수록 근접된 분말의 용융화가 더 잘 진행된다. 그 결과, 구조체 밀도 및 치수안정성은 향상되나 근접 분말의 용융화에 의한 구조체형성 선폭 및 두께 증가로 인한 형성 정밀성 감소에 따라 SLS 3D 적층 공정에 문제점을 야기시킴을 알 수 있었다.

Keywords: selective laser sintering; 3D printing; polymer powder; sintering; dimensional stability; coefficient of thermal expansion

References
  • 1. Matias E, Rao B, 2015 Proceeding of PICMET’15, p 551 (2015).
  •  
  • 2. Crump SS, U.S. Patent 5,121,329 (1992).
  •  
  • 3. Hull CW, U.S. Patent 4,575,330 (1986).
  •  
  • 4. Deckard C, U.S. Patent 4,863,538 (1989).
  •  
  • 5. Singh R, J. Mech. Sci. Tech., 25, 1011 (2011)
  •  
  • 6. Hofmann M, ACS Macro. Lett., 3, 382 (2014)
  •  
  • 7. Schmid M, Amado A, Wegener K, AIP Conference Proceeding, 1664, 160009 (2015)
  •  
  • 8. Schmidt J, Sachs M, Blumel D, Winzer B, Toni F, Wirth K, Peukert W, Procedia Eng., 103, 550 (2015)
  •  
  • 9. Rietzel D, Aquite W, Drummer D, Osswald T, 44th CIRP conference on Manufacturing System, Madison, June 1-3 (2011).
  •  
  • 10. Stansbury JW, Idacavage MJ, Dent. Mater., 32, 54 (2016)
  •  
  • 11. Kruth JP, Levy GN, Klocke F, Childs THC, CIRP Ann. Manuf. Techn., 56, 730 (2007)
  •  
  • 12. Pham DT, Dimov SS, Lacan F, J. Eng. Manuf., 213, 435 (1999)
  •  
  • 13. Leon AC, Chen Q, Palaganas NB, Palaganas JO, Manapat J, Advincula RC, React. Funct. Polym., 103, 141 (2015)
  •  
  • 14. Berretta S, Ghita O, Evans KE, Eur. Polym. J., 59, 218 (2014)
  •  
  • 15. Tontowi AE, Childs THC, Rapid Prototyping J., 7, 180 (2001)
  •  
  • 16. Gibson I, Shi D, Rapid Prototyping J., 3, 129 (1997)
  •  
  • 17. Ajoku U, Hopkinson N, Caine M, Mat. Sci. Eng., 428, 211 (2006)
  •  
  • 18. Frenkel J, J. Phys., 9, 385 (1945)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2017; 41(1): 61-67

    Published online Jan 25, 2017

  • 10.7317/pk.2017.41.1.61
  • Received on Jun 15, 2016
  • Accepted on Aug 10, 2016