In this paper, short basalt fiber-reinforced polyoxymethylene (POM) composites were prepared by melt blending and injection molding. The mechanical and tribological properties of the composites were studied by an orthogonal experiment. It was found that the optimal combination of fiber length 4 mm, fiber content 20 wt% and treated with KH550 would result in a comprehensive property which is 27.45% higher tensile strength, 9.65% higher impact strength and 18.11% higher flexural strength with compared to that of pure POM. But its tribological properties would be worse with the addition of the basalt fibers. After incorporating 10 wt% of polytetrafluoroethylene (PTFE) into the composites, the tribological properties of the composites was improved, closed to that of pure POM, with an insignificant decrease to their mechanical properties. Moreover, the morphology of fracture surfaces and worn surfaces evaluated by scanning electron microscopy showed good agreement with the results of the literature.
Keywords: basalt fibers; polyoxymethylene; mechanical properties; tribological properties