Article
  • Mechanical and Tribological Properties of Short Basalt Fiber-reinforced Polyoxymethylene Composites
  • Liu C, Long C, Chen L, Liu J, Cao T, Zhang J
  • Basalt 단섬유로 보강된 POM 복합소재의 기계적 및 마찰 특성
Abstract
In this paper, short basalt fiber-reinforced polyoxymethylene (POM) composites were prepared by melt blending and injection molding. The mechanical and tribological properties of the composites were studied by an orthogonal experiment. It was found that the optimal combination of fiber length 4 mm, fiber content 20 wt% and treated with KH550 would result in a comprehensive property which is 27.45% higher tensile strength, 9.65% higher impact strength and 18.11% higher flexural strength with compared to that of pure POM. But its tribological properties would be worse with the addition of the basalt fibers. After incorporating 10 wt% of polytetrafluoroethylene (PTFE) into the composites, the tribological properties of the composites was improved, closed to that of pure POM, with an insignificant decrease to their mechanical properties. Moreover, the morphology of fracture surfaces and worn surfaces evaluated by scanning electron microscopy showed good agreement with the results of the literature.

Keywords: basalt fibers; polyoxymethylene; mechanical properties; tribological properties

References
  • 1. Anand P, Anbumalar V, Polym. Korea, 39(1), 46 (2015)
  •  
  • 2. Lopresto V, Leone C, Iorio ID, Compos. Part B-Eng., 42, 717 (2011)
  •  
  • 3. Anand P, Anbumalar V, Polym. Korea, 30, 347 (2011)
  •  
  • 4. Zhou Y, Long C, Huang J, Deng Z, Cao T, J. Reinf. Plast. Compos., 32, 1348 (2013)
  •  
  • 5. Czigany T, Vad J, Poloskei K, Mech. Eng., 49, 3 (2005)
  •  
  • 6. Kajzar F, Pearce EM, Turovskij NA, Mukbaniani OV, “Interdisciplinary Concepts and Research,” in Key Engineering Materials, CRC Press, Florida, Vol 2 (2014).
  •  
  • 7. Dalinkevich AA, Gumargalieva KA, Marakhovsky SS, Soukhanov AV, J. Nat. Fibers, 6, 248 (2009)
  •  
  • 8. Czigany T, Poloskei K, Karger-Kocsis J, J. Mater. Sci., 40(21), 5609 (2005)
  •  
  • 9. Sim J, Park C, Moon DY, Compos. Part B-Eng., 36, 504 (2005)
  •  
  • 10. Kim MS, Park SJ, Polym. Korea, 39(2), 219 (2015)
  •  
  • 11. Matko S, Anna P, Marosi G, Szep A, Keszei S, Czigany T, Poloskei K, Macromol. Symp., 202, 255 (2003)
  •  
  • 12. Czigany T, Mater. Sci. Forum, 473, 59 (2004)
  •  
  • 13. Bashtannik PI, Ovcharenko VG, BootMech YA, Compos. Mater., 33, 600 (1997)
  •  
  • 14. Ozturk S, J. Mater. Sci., 40(17), 4585 (2005)
  •  
  • 15. Artemenko SE, Fibre. Chem., 35, 226 (2003)
  •  
  • 16. Wang M, Zhang Z, Li Y, Li M, Sun Z, J. Reinf. Plast. Compos., 27, 393 (2008)
  •  
  • 17. Czigany T, Compos. Sci. Technol., 66, 3210 (2006)
  •  
  • 18. Hasegawa S, Takeshita H, Yoshii F, Sasaki T, Makuuchi K, Nishimoto S, Polymer, 41(1), 111 (2000)
  •  
  • 19. Hama H, Tashiro K, Polymer, 44(10), 3107 (2003)
  •  
  • 20. Kawaguchi K, Mizuguchi K, Suzuki K, Sakamoto H, Oguni T, J. Appl. Polym. Sci., 118(4), 1910 (2010)
  •  
  • 21. Qian Z, Wang Y, Li J, Wang X, Wu D, J. Reinf. Plast. Compos., 33, 294 (2014)
  •  
  • 22. Long C, Lubr. Eng., 36, 41 (2011)
  •  
  • 23. Zhang YH, Yu CX, Chu PK, Lv FZ, Zhang CA, Ji JH, Zhang R, Wang HL, Mater. Chem. Phys., 133(2-3), 845 (2012)
  •  
  • 24. Fukuda H, Chou TW, J. Mater. Sci., 17, 1003 (1982)
  •  
  • 25. Templeton PA, J. Reinf. Plast. Compos., 9, 210 (1990)
  •  
  • 26. Kim MT, Kim MH, Rhee KY, Park SJ, Compos. Part B-Eng., 42, 499 (2011)
  •  
  • 27. Wu X, Leung DYC, Appl. Energy, 88(11), 3615 (2011)
  •  
  • 28. Zhang H, Zhang Z, Friedrich K, Compos. Sci. Technol., 67, 222 (2007)
  •  
  • 29. Wang W, Lu GJ, Acta Mater Compos. Sin., 30, 315 (2013)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(6): 836-845

    Published online Nov 25, 2016

  • 10.7317/pk.2016.40.6.836
  • Received on Feb 22, 2016
  • Accepted on Jul 22, 2016