Article
  • Regulating the Morphology of Calcite through Selective Binding of Polymers with Carboxylic Acids
  • Yang T, Kim D, Huh E, Jho JY, Kim IW
  • 카복실기가 있는 고분자를 이용한 Calcite 결정의 형태 조절
  • 양태욱, 김동환, 허유진, 조재영, 김일원
Abstract
Calcite is one of the anhydrous polymorphs of calcium carbonate. When it is found in biominerals, they often have complex morphologies controlled by associated proteins. Asprich, rich in carboxylic acid groups, is one of the representative proteins. In previous studies, peptides originated from Asprich showed extensive modification abilities of calcite morphologies, especially in the presence of magnesium ions. In the present study, synthetic polymers with carboxylic acid groups were utilized to regulate the morphologies of calcite. Poly(acrylic acid) and poly(methacrylic acid) were able to reproduce the controlling ability of Asprich peptides, but poly(ethylene imine) and poly(N-isopropylacrylamide) could not. The observed phenomenon can be explained through selective binding of the anionic polymers to the {hk0} planes of calcite.

탄산칼슘 결정의 다형체 중 하나인 calcite는 여러 생체미네랄의 주된 구성성분이며, 생체단백질의 작용으로 복잡한 형상을 지니는 경우가 많다. 이러한 작용을 하는 대표적인 단백질인 Asprich는 카복실기가 풍부하며, Asprich에서 유래한 펩티드와 마그네슘 이온이 공존할 때 calcite 결정 형태에 대한 영향이 큰 것이 알려져 있다. 본 연구에서는 카복실기가 있는 합성 고분자를 이용하여 calcite 결정의 형상을 제어하였다. Poly(acrylic acid)와 poly(methacrylic acid)를 이용하였을 때는 Asprich 펩티드의 calcite 형태 조절 작용을 재현할 수 있었으나, poly(ethylene imine)과 poly(N-isopropylacrylamide)를 첨가하였을 때는 유사한 효과를 관찰할 수 없었다. 이러한 현상은 음이온성 고분자가 calcite의 {hk0} 결정면에 선택적으로 결합하는 경향으로 설명할 수 있다.

Keywords: calcite; poly(acrylic acid); poly(methacrylic acid); selective binding; magnesium ion

References
  • 1. Lowenstam HA, Weiner S, On Biomineralization, Oxford University Press, New York, 1989.
  •  
  • 2. Waatabe N, J. Ultrastruct. Res., 12, 351 (1965)
  •  
  • 3. Nudelman F, Chen HH, Goldberg HA, Weiner S, Addadi L, Faraday Discuss., 136, 9 (2007)
  •  
  • 4. Gotliv BA, Kessler N, Sumerel JL, Morse DE, Tuross N, Addadi L, Weiner S, Chem. Bio. Chem., 6, 304 (2005)
  •  
  • 5. Ndao M, Keene E, Amos FF, Rewari G, Ponce CB, Estroff L, Evans JS, Biomacromolecules, 11(10), 2539 (2010)
  •  
  • 6. Kim IW, Giocondi JL, Orme C, Collino S, Evans JS, Cryst. Growth Des., 8, 1154 (2008)
  •  
  • 7. Kim IW, Collino S, Evans JS, Int. J. Mol. Sci., 13(3), 3949 (2012)
  •  
  • 8. Han YJ, Aizenberg J, J. Am. Chem. Soc., 125(14), 4032 (2003)
  •  
  • 9. Nishino Y, Oaki Y, Imai H, Cryst. Growth Des., 9, 223 (2009)
  •  
  • 10. Loste E, Wilson RM, Seshadri R, Meldrum FC, J. Cryst. Growth, 254(1-2), 206 (2003)
  •  
  • 11. Katz A, Geochim. Cosmochim. Acta, 37, 1663 (1973)
  •  
  • 12. Berner RA, Geochim. Cosmochim. Acta, 39, 489 (1975)
  •  
  • 13. Falini G, Gazzano M, Ripamonti A, J. Cryst. Growth, 137, 577 (1994)
  •  
  • 14. Meldrum FC, Hyde ST, J. Cryst. Growth, 231(4), 544 (2001)
  •  
  • 15. Sugawara A, Kato T, Compos. Interfaces, 11(4), 287 (2004)
  •  
  • 16. Kotachi A, Miura T, Imai H, Chem. Mater., 16, 3191 (2004)
  •  
  • 17. Miura T, Kotachi A, Oaki Y, Imai H, Cryst. Growth Des., 6, 612 (2006)
  •  
  • 18. Pai RK, Pillai S, J. Am. Chem. Soc., 130(39), 13074 (2008)
  •  
  • 19. Graf DL, Am. Mineral., 46, 1283 (1961)
  •  
  • 20. Cullity BD, Stock SR, X-ray Diffraction, Prentice Hall, New Jersey, 2001.
  •  
  • 21. Jung S, Kim IW, Polym. Korea, 37(5), 663 (2013)
  •  
  • 22. Collino S, Kim IW, Evans JS, Cryst. Growth Des., 6, 839 (2006)
  •  
  • 23. Hartman P, Perdok WG, Acta Crystallogr., 8, 49 (1955)
  •  
  • 24. Heijnen WMM, N. Jb. Miner. Mh., 8, 357 (1985)
  •  
  • 25. Aquilano D, Calleri M, Natoli E, Rubbo M, Sgualdino G, Mater. Chem. Phys., 66(2-3), 159 (2000)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(5): 813-817

    Published online Sep 25, 2016

  • 10.7317/pk.2016.40.5.813
  • Received on Jun 25, 2016
  • Accepted on Jul 7, 2016