Article
  • Thermal Analysis Study of Modified Urea-Formaldehyde Resin
  • Hong W, Meng M, Gao D, Liu Q, Kang C, Huang S, Zhou Z, Chen C
  • 개량된 요소 수지의 열적 특성 분석
Abstract
In this study, the structures and thermal stability of pure urea-formaldehyde resin (PR) and modified urea-formaldehyde (UF) resin are investigated by differential thermal gravity (TG/DTG), and differential scanning calorimetry (DSC) supported by data from Fourier transform infrared spectroscopy. FTIR analysis indicate that the modifiers such as polydimethylsiloxane, dicyclohexylcarbodiimide and phenol have actively participated in the curing reactions. TG/DTG and DSC curve of UF resin show that its pyrolysis process is conducted in three steps: desiccation and dehydration, flash pyrolysis and slow decomposition. Compared with pure urea-formaldehyde resin (PR), modified UF resin exhibited good thermal stability. The activation energy (E) of modified UF resin acquired by Kissinger and Ozawa method was higher than that of PR. ΔH > 0, ΔS > 0 and ΔG > 0 in the thermal decomposition process of UF resin means that the decomposition reaction of UF resin before and after modification is a process of unnatural decalescence and entropy increase.

Keywords: modified UF resin; thermal properties; TG/DTG; thermodynamics; thermal decomposition kinetics

References
  • 1. Poulhet G, Dusanter S, Crunaire S, Locoge N, Gaudion V, Merlen C, Kaluznyd P, Coddevillea P, Build. Environ., 71, 111 (2014)
  •  
  • 2. Ahamad T, Kumar V, Nishat N, Polym. Int., 55, 1398 (2006)
  •  
  • 3. Paiva NT, Henriques A, Cruz P, Ferra JM, Carvalho LH, Magalhaes FD, J. Appl. Polym. Sci., 124(3), 2311 (2012)
  •  
  • 4. Zhu X, Xu E, Lin R, Wang X, Gao Z, J. Appl. Polym. Sci., 131, 742 (2014)
  •  
  • 5. Zhang YF, Yang CH, Li YW, Liang LY, Lu MG, J. Polym. Res., 21, 1 (2014)
  •  
  • 6. Culhaoglu S, Kaya I, Polym. Korea, 39(2), 225 (2015)
  •  
  • 7. Zhao Y, Liang H, Wu D, Bian J, Hao Y, Zhang G, Liu S, Zhang H, Dong L, Polym. Korea, 39(2), 247 (2015)
  •  
  • 8. Ko YS, Kwon WS, No MH, Yim JH, Polym. Korea, 39(2), 346 (2015)
  •  
  • 9. Park SY, Rhee GH, Nam YH, Lyu MY, Polym. Korea, 39(5), 775 (2015)
  •  
  • 10. Kim S, Kim HJ, Kim HS, Lee YK, Yang HS, J. Adhes. Sci. Technol., 20(8), 803 (2006)
  •  
  • 11. Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos KM, Chrissafis K, J. Therm. Anal. Calorim., 92, 29 (2008)
  •  
  • 12. Tsvetkov VE, Karpova TN, Polym. Sci. Ser. A, 5, 33 (2012)
  •  
  • 13. Chae DW, Choi HK, Jeon JY, Polym. Korea, 40(1), 154 (2016)
  •  
  • 14. Kissinger HE, Anal. Chem., 29, 1702 (1957)
  •  
  • 15. Ozawa T, Thermochim. Acta, 203, 159 (1992)
  •  
  • 16. Riaz M, Perveen R, Javed MR, Nadeem H, Rashid MH, Enzyme Microb. Technol., 41(5), 558 (2007)
  •  
  • 17. Yu LZ, Gong Y, Liu X, Zhou C, China Adhes., 21, 43 (2012)
  •  
  • 18. Liu X, Yu QY, Yu LZ, Shen LM, Gu, SF, Fan YC, China Adhes., 23, 39 (2014)
  •  
  • 19. Liu R, Zhang TL, Yang L, Zhou ZL, Zhang JG, Chin. J. Explos. Propell., 36, 16 (2013)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(5): 707-713

    Published online Sep 25, 2016

  • 10.7317/pk.2016.40.5.707
  • Received on Mar 17, 2016
  • Accepted on May 29, 2016