Article
  • Effect of Silica Nanoparticles on the Electrical Properties of Epoxy/Silver Nanowire Nanocomposites
  • Oh WK, Kim J, Song JP, Lee SJ
  • 실리카 나노입자가 에폭시/은 나노와이어 나노복합재료의 전기적 물성에 미치는 영향
  • 오원교, 김정목, 송재필, 이성재
Abstract
Epoxy/silver nanowire (AgNW) nanocomposites are emerging class of materials that provide electrically conductive properties to insulating epoxies by adding AgNWs with a high aspect ratio. However, AgNWs are easy to agglomerate due to their van der Waals attractions, resulting in an obstacle to enhance material properties. Silica nanoparticles (SNPs) known to have good affinity with metallic nanofillers prevent agglomeration of the nanofillers. In this study, the effect of SNPs on the dispersion and electrical properties of epoxy/AgNW nanocomposites was investigated. In the nanocomposites of AgNW 3 vol%, electrical conductivity was sharply increased with the addition of SNPs by 2.63, 3.95, 5.26, and 7.89 vol%. The electrical network of AgNWs could be formed at SNP 3.95 vol%. With the addition of SNP 7.89 vol%, the electrical percolation threshold of epoxy/AgNW nanocomposites was AgNW 1.39 vol% and the electrical conductivity at AgNW 4 vol% was as high as 10 S/m.

에폭시/은 나노와이어(AgNW) 나노복합재료는 전기 절연성 에폭시에 높은 형상비의 AgNW를 첨가하여 전도성을 부여한 재료이다. 하지만, AgNW 간의 van der Waals 인력에 의한 응집은 나노복합재료의 물성 향상에 장애요인이 되고 있다. 실리카 나노입자(SNP)는 금속 나노필러와 친화력이 우수하여 응집을 방지하고 분산에 도움을 주는 물질로 알려져 있다. 본 연구에서는 에폭시/AgNW 나노복합재료의 분산성 및 전기적 물성에 SNP가 미치는 영향에 대해 고찰하였다. AgNW 함량 3 vol%인 나노복합재료에 있어서 SNP를 첨가하지 않은 경우 전기 전도도가 향상되지 않았지만, SNP를 2.63, 3.95, 5.26, 7.89 vol% 첨가함에 따라 급격히 향상되었다. AgNW의 전기적 네트워크는 SNP 함량 3.95 vol%에서 형성되었다. 첨가한 SNP의 함량이 7.89 vol%인 경우, 에폭시/AgNW 나노복합재료의 전기적 임계농도는 AgNW 1.39 vol%로 나타났으며 AgNW 4 vol%에서의 전기 전도도는 10 S/m 정도의 값을 보여 주었다.

Keywords: nanocomposite; silver nanowire; silica nanoparticle; electrical properties; percolation threshold

References
  • 1. Gangopadhyay R, De A, Chem. Mater., 12, 608 (2000)
  •  
  • 2. Nam S, Cho HW, Lim S, Kim D, Sung BJ, ACS Nano, 7, 851 (2013)
  •  
  • 3. Kwon G, Shin K, Sung BJ, Appl. Phys. Lett., 94, 193108 (2009)
  •  
  • 4. Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS, Chem. Phys. Lett., 364(3-4), 303 (2002)
  •  
  • 5. Schilling T, Jungblut S, Miller MA, Phys. Rev. Lett., 98, 108303 (2007)
  •  
  • 6. Nigro B, Grimaldi C, Miller MA, Ryser P, Schilling T, Phys. Rev. E, 88, 042140 (2013)
  •  
  • 7. Ivankovic M, Incarnato L, Kenny JM, Nicolais L, J. Appl. Polym. Sci., 90(11), 3012 (2003)
  •  
  • 8. Wan JT, Li BG, Fan H, Bu ZY, Xu CJ, Thermochim. Acta, 511(1-2), 51 (2010)
  •  
  • 9. Yu YH, Ma CCM, Yuen SM, Teng CC, Huang YL, Wang I, Wei MH, Macromol. Mater. Eng., 295, 1017 (2010)
  •  
  • 10. Zach MP, Ng KH, Penner RM, Science, 290, 2120 (2000)
  •  
  • 11. Sun XY, Xu FQ, Li ZM, Zhang WH, Mater. Chem. Phys., 90(1), 69 (2005)
  •  
  • 12. Yang R, Sui C, Gong J, Qu L, Mater. Lett., 61, 900 (2007)
  •  
  • 13. Makita Y, Ikai O, Ookubo A, Ooi K, Chem. Lett., 31(9), 928 (2002)
  •  
  • 14. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR, Phys. Rev. Lett., 95, 257403 (2005)
  •  
  • 15. Yin Y, Lu Y, Sun Y, Xia Y, Nano Lett., 2, 427 (2002)
  •  
  • 16. Coskun S, Aksoy B, Unalan HE, Cryst. Growth Des., 11, 4963 (2011)
  •  
  • 17. Jiu J, Araki T, Wang J, Nogi M, Sugahara T, Nagao S, Koga H, Suganuma K, Nakazawa E, Hara M, Uchida H, Shinozaki K, J. Mater. Chem. A, 2, 6326 (2014)
  •  
  • 18. Rao KS, El-Hami K, Kodaki T, Matsushige K, Makino K, J. Colloid Interface Sci., 289(1), 125 (2005)
  •  
  • 19. Nam S, Cho HW, Kim T, Kim D, Sung BJ, Lim S, Kim H, Appl. Phys. Lett., 99, 043104 (2011)
  •  
  • 20. Cho HW, Nam S, Lim S, Kim D, Kim H, Sung BJ, J. Appl. Phys., 115, 154307 (2014)
  •  
  • 21. Lee JH, Lee P, Lee D, Lee SS, Ko SH, Cryst. Growth Des., 12, 5598 (2012)
  •  
  • 22. Na HY, Sureshkumar M, Lee SJ, Polym. Korea, 39(4), 655 (2015)
  •  
  • 23. Stober W, Fink A, Bohn E, J. Colloid Interface Sci., 26, 62 (1968)
  •  
  • 24. Lindberg R, Sjoblom J, Sundholm G, Colloids Surf. A: Physicochem. Eng. Asp., 99, 79 (1995)
  •  
  • 25. Bogush GH, Zukoski CF, J. Colloid Interface Sci., 142, 1 (1991)
  •  
  • 26. Kim HS, Kim WY, Kim YJ, J. Korean Ind. Eng. Chem., 7(5), 963 (1996)
  •  
  • 27. Lee TM, Ma CCM, J. Polym. Sci. A: Polym. Chem., 44(2), 757 (2006)
  •  
  • 28. Lippincott ER, Valkenburg AV, Weir CE, Bunting EN, J. Res. Natl. Bur. Stand., 61, 2885 (1958)
  •  
  • 29. Beganskiene A, Sirutkaitis V, Kurtinaitiene M, Juskenas R, Kareiva A, Mater. Sci. Medzg., 10, 287 (2004)
  •  
  • 30. Ponyrko S, Kobera L, Brus J, Matejka L, Polymer, 54(23), 6271 (2013)
  •  
  • 31. Na HY, Yeom HY, Yoon BC, Lee SJ, Polym. Korea, 38(2), 171 (2014)
  •  
  • 32. Yang X, He W, Wang S, Zhou G, Tang Y, J. Mater. Sci. -Mater. Electron., 23, 108 (2012)
  •  
  • 33. Hu GJ, Zhao CG, Zhang SM, Yang MS, Wang ZG, Polymer, 47(1), 480 (2006)
  •  
  • 34. Ye L, Lai Z, Liu J, Tholen A, IEEE Trans. Electron Packag. Manuf., 22, 299 (1999)
  •  
  • 35. Jing X, Zhao W, Lan L, J. Mater. Sci. Lett., 19(5), 377 (2000)
  •  
  • 36. Bar H, Narkis M, Boiteux G, Polym. Compos., 26, 12 (2005)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(4): 614-621

    Published online Jul 25, 2016

  • 10.7317/pk.2016.40.4.614
  • Received on Feb 11, 2016
  • Accepted on Mar 14, 2016