Article
  • Characterization of the Dynamic Properties of Natural Rubbers Coagulated Using Different Methods
  • Gao T, Xie R, Zhang L, Li P, Gui H, Huang M, Chung K
  • 응고 방법에 따른 천연고무의 동적특성
Abstract
Natural rubber (NR) was coagulated using different methods, i.e., acid coagulation with acetic acid (A-NR), natural coagulation (N-NR), and microorganism coagulation (M-NR). The crosslink density, vulcanization properties, dynamic properties, and heat build-up were investigated. The results showed that M-NR had the highest crosslink density and fastest cure rate, and A-NR had the lowest crosslink density and slowest cure rate. The dynamic properties were measured using a rubber process analyzer, dynamic thermomechanical analysis and compression heat build-up tester; the results showed that the dynamic properties had a close relationship with the crosslink density. The loss factor was lowest for M-NR and highest for A-NR.

천연고무 라텍스를 아세트산을 사용한 응고(A-NR), 자연 응고(N-NR) 및 미생물을 사용한 응고(M-NR) 등 다른 방법들로 응고하였고, 이들의 가교도, 가교특성, 동적특성 및 열축적 특성 등을 조사하였다. 결과에 따르면 MNR의 경우 가장 높은 가교도와 가장 빠른 경화속도를 나타냈으며, A-NR은 정 반대인 가장 낮은 가교도와 가장 느린 경화속도를 나타내었다. 이들 고무의 동적특성은 rubber process analyzer(RPA), dynamic mechanical analyzer(DMA) 및 압축 열축적 분석방법 등을 이용하여 측정하였다. 동적특성은 고무의 가교도와 매우 밀접한 관계가 있었음을 알 수 있었고, 손실계수는 M-NR이 가장 낮았으며 A-NR의 경우는 가장 높은 값을 나타내었다.

Keywords: natural rubber; crosslink density; dynamic properties; coagulation method

References
  • 1. Frank WP, Anthony AG, Methods, 27, 77 (2002)
  •  
  • 2. Sansatsadeekul J, Sakdapipanich J, Rojruthai P, J. Biosci. Bioeng., 111(6), 628 (2011)
  •  
  • 3. Ho CC, Subramaniam A, Yong WM, Conf. Kuala Lumpur., 2, 441 (1976)
  •  
  • 4. Southorn WA, Yip E, J. Rubb. Res. Inst. Malaya, 20, 201 (1968)
  •  
  • 5. Xiaodong S, Changfeng Z, Shuangquan L, Jianhe L, Jieping Z, Chin. J. Trop. Agri., 27, 78 (2007)
  •  
  • 6. Ehabe E, Le Roux Y, Ngolemasango F, Bonfils F, Nkeng G, Nkouonkam B, Sainte-Beuve J, Gobina MS, J. Appl. Polym. Sci., 86(3), 703 (2002)
  •  
  • 7. Zhang BL, Liu PM, Deng WY, Lu HX, Ding L, Wang PY, China Rubb. Ind., 59, 553 (2012)
  •  
  • 8. John CK, Sin SW, J. Rubb. Res. Inst. Malaya, 23, 257 (1973)
  •  
  • 9. John CK, J. Rubb. Res. Inst. Malaya, 19, 286 (1966)
  •  
  • 10. Jiankun H, Mingxue W, Huilun L, Tao Z, Chin. J. Trop. Crop., 32, 1388 (2011)
  •  
  • 11. Jieping Z, Chengpeng L, Xiaodong S, Sidong L, Lei Y, China Elastom., 18, 1 (2008)
  •  
  • 12. Zhang BL, Deng WY, Lu HX, Chen M, Qian HL, J. Appl. Polym. Sci., 100(5), 4114 (2006)
  •  
  • 13. Zhao F, Zhao S, Bi W, Kuhn W, Blieskastel, Jian Y, Kaut. Gummi. Kunst., 10, 554 (2007)
  •  
  • 14. Fei Z, Weina B, Ping Z, Jian Y, Kuhn W, China Synth. Rub. Ind., 31, 50 (2008)
  •  
  • 15. Kuhn W, Barth P, Hafner S, Simon G, Schneider H, Macromolecules, 27(20), 5773 (1994)
  •  
  • 16. Kuhn W, Barth P, Dennerb P, Mullera R, Solid State Nucl. Magn. Reson., 6, 295 (1996)
  •  
  • 17. Grinberg F, Heidenreich M, Kuhn W, J. Magn. Reson., 159, 87 (2002)
  •  
  • 18. Park BH, Jung IG, Park SS, Polym. Korea, 25(1), 63 (2001)
  •  
  • 19. He Y, Natural Rubber Processing, Hainan Press, Haikou, 2007.
  •  
  • 20. Chen Y, Xu C, Polym. Compos., 32, 1593 (2011)
  •  
  • 21. Wang ZH, Lu YL, Liu J, Dang ZM, Zhang LQ, Wang WM, J. Appl. Polym. Sci., 119(2), 1144 (2011)
  •  
  • 22. Wang L, Zhao SH, Li A, Zhang XY, Polymer, 51(9), 2084 (2010)
  •  
  • 23. Joseph S, Appukuttan SP, Kenny JM, Puglia D, Thomas S, Joseph K, J. Appl. Polym. Sci., 117(3), 1298 (2010)
  •  
  • 24. Wang Z, Lu Y, Liu J, Dang ZM, Zhang LQ, Wang W, Polym. Adv. Technol., 22, 2302 (2010)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(3): 446-451

    Published online May 25, 2016

  • 10.7317/pk.2016.40.3.446
  • Received on Dec 29, 2015
  • Accepted on Feb 17, 2016