Article
  • Fabrication and Analyses of Bionic Polymer Lens System
  • Xuan Yin Wang, Dan Liang†, Feng Tang, and Jia Wei Du
  • 생체공학적 고분자 렌즈 시스템의 제조와 분석
Abstract
In this paper, we design and fabricate a bionic solid tunable lens which is mainly made of polymer materials. The lens focal length can be changed flexibly by pressing the lens surface to alter the curvature radius. A detailed description of the lens structure, materials and fabrication process is presented. The lens mechanical properties and deformation process are simulated and analyzed using Ansys software. A precise experimental device based on a stepping motor is fabricated to measure and analyze the relationship between the displacement load and focal length. The lens focal length can be reversibly changed from 31.8 to 14.1 mm under 1 mm variation of displacement load. This paper offers a feasible way for the design, fabrication, and actuation of the solid tunable lens, which can be used in various machine vision apparatus.

Keywords: tunable lens; polymer material; deformation and stress analyses; actuation device

References
  • 1. Park SC, Lee WS, J. Korean Phys. Soc., 62, 435 (2013)
  •  
  • 2. Xu S, Liu Y, Ren H, Wu ST, Opt. Express, 18, 12430 (2010)
  •  
  • 3. Shian S, Diebold RM, Clarke DR, Opt. Express, 21, 8669 (2013)
  •  
  • 4. Son SI, Pugal D, Hwang T, Choi HR, Koo JC, Lee Y, Nam JD, Appl. Optics, 51, 2987 (2012)
  •  
  • 5. Feng GH, Chou YC, Appl. Optics, 48, 3284 (2009)
  •  
  • 6. Savidis N, Peyman G, Peyghambarian N, Schwiegerling J, Appl. Optics, 52, 2858 (2013)
  •  
  • 7. Li L, Wang QH, Opt. Eng., 51, 043001 (2012)
  •  
  • 8. Brochu P, Pei QB, Macromol. Rapid Commun., 31(1), 10 (2010)
  •  
  • 9. Marks R, Mathine DL, Peyman G, Schwiegerling J, Peyghambarian N, Opt. Lett., 34, 515 (2009)
  •  
  • 10. Kuiper S, Hendriks BHW, Appl. Phys. Lett., 85, 1128 (2004)
  •  
  • 11. Blum M, Bueler M, Gratzel C, Aschwanden M, Proc. SPIE 8167, 8167OW, Sep. 22, 2011. doi: 10.1117/12.897608.
  •  
  • 12. Fraval N, Berier F, Castany O, Proc. SPIE 8252, 8252OQ, Feb. 9, 2012. doi: 10.1117/12.909233.
  •  
  • 13. Fraval N, de La Tocnaye JLDB, Appl. Optics, 49, 2778 (2010)
  •  
  • 14. Tsai YC, Chung PK, Shih WP, Su PC, Microelectron. Eng., 98, 610 (2012)
  •  
  • 15. Beadie G, Sandrock ML, Wiggins MJ, Lepkowicz RS, Shirk JS, Ponting M, Baer E, Opt. Express, 16, 11847 (2008)
  •  
  • 16. Park EJ, Kim IS, Park SS, Lee HS, Lee MS, Polym. Korea, 37(6), 744 (2013)
  •  
  • 17. Wu G, Zhang H, Zhang H, Polym. Korea, 39(5), 809 (2015)
  •  
  • 18. Lee JW, Kim JH, Ji SG, Kim KS, Kim YC, Polym. Korea, 39(4), 572 (2015)
  •  
  • 19. Ra SH, Lee HD, Kim YH, Polym. Korea, 39(4), 579 (2015)
  •  
  • 20. Ra SH, Kim YH, Polym. Korea, 38(5), 602 (2014)
  •  
  • 21. Bak SW, Kang HJ, Kang DW, Polym. Korea, 38(2), 138 (2014)
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2022 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2016; 40(2): 209-215

    Published online Mar 25, 2016

  • 10.7317/pk.2016.40.2.209
  • Received on Sep 20, 2015
  • Accepted on Dec 12, 2015