Article
  • Anti-hydrolysis of PBT as Functions of Carbodiimide Types and Contents
  • Lee K, Huh PH, Kim B
  • Carbodiimide의 종류와 함량에 따른 Poly(butylene terephthalate)(PBT)의 내가수분해 거동
  • 이관희, 허필호, 김병규
Abstract
Mechanical and rheological properties of poly(butylene terephthalate) (PBT) samples prepared through extrusion and injection with 0.2~0.8 wt% of the polymeric and monomeric carbodiimide were estimated. To evaluate the effect of anti-hydrolysis due to carbodiimide type and content, PCT and USCAR CLASS III test were estimated. The initial carboxyl end group contents were decreased with increasing the level of carbodiimide of both types, and their mechanical and rheological behaviors were similar. In a hot and humid environment for a long-time reliability properties, both properties at relatively high carbodiimide contents were constantly maintained with the increase of time and cycle time.The polymer type was slightly superior to the monomer. In the glass fiber reinforced A class PBT and recyclePBT, the retention ratio of PBT added to 0.8 wt% carbodiimide was higher than that of PBT without carbodiimide in a hot and humid environment.

고분자 타입 및 단량체 타입의 carbodiimide를 0.2~0.8% 첨가하여 poly(butylene terephthalate)(PBT)를 압출한 후 사출 시편을 제작하여 초기 carboxyl 말단기 함량, 기계적 물성 및 유변 물성을 측정하였다. Carbodiimide의 형태와 함량이 PBT의 내가수분해성에 미치는 영향을 알아보기 위해 pressure cooker test(PCT)와 USCAR CLASS III 테스트를 진행하였다. Carbodiimide의 함량이 높을수록 초기 carboxyl 말단기 함량이 낮았으며, 고분자 타입과 단량체 타입의 기계적 및 유변 물성 거동은 유사하였다. 장기 신뢰성을 위한 고온 다습 환경에서, 시간 및 사이클회수 증가에 따라 carbodiimde의 높은 함량에서 기계적 및 유변 물성 유지율은 높았으며, 고분자 타입이 단량체 타입보다 다소 우세하였다. A급 PBT와 재생 PBT를 사용한 유리섬유 강화 PBT에서, carbodiimide를 0.8% 추가한 경우가 추가하지 않은 경우보다 고온 다습한 환경에서 기계적 및 유변 물성 유지율이 높았다.

Keywords: poly(butylene terephthalate); carboxyl end group; carbodiimide; pressure cooker test; US-CAR CLASS 3

References
  • 1. Paul DR, Newman S, Polymer Blends, Vol 1 and 2, Academic, New York, 1978.
  •  
  • 2. Flory P, U.S. Patent 2,172,374 (1939).
  •  
  • 3. Monroe G, U.S. Patent 3,031,433 (1962).
  •  
  • 4. Vouyiouka SN, Karakatsani EK, Papaspyrides C, Prog. Polym. Sci, 30, 10 (2005)
  •  
  • 5. Ravindranath K, Mashelkar R, J. Appl. Polym. Sci., 39, 1325 (1990)
  •  
  • 6. Weger F, Hagen R, U.S. Patent 5,773,555 (1998).
  •  
  • 7. Fakirov S, Avramova N, Acta Polym., 33, 271 (1982)
  •  
  • 8. Inata H, Matsumura S, J. Appl. Polym. Sci., 30, 3325 (1985)
  •  
  • 9. Shima T, Urasaki T, Oka I, Adv. Chem. Ser., 128, 183 (1973)
  •  
  • 10. Dijkstra AJ, Goodman I, Reid JAW, U. S. Patent 3,553,157 (1971).
  •  
  • 11. Scheiris J, “Additives for the Modification of Poly(Ethylene Terephthalate) to Produce Engineering-Grade Polymers”, in Modern Polyesters, Scheiris J, Long TE, Editors, John Wiley & Sons Ltd., England (2003).
  •  
  • 12. Imashiro Y, Takahashi I, Horie N, Suzuki S, U. S. Patent 6,333,363 (2001).
  •  
  • 13. Heinz T, Heym M, Muhlbach K, Plachetta C, U. S. Patent 5,733,959 (1998).
  •  
  • 14. Thomas NW, Berardinelli FM, Edelman R, U. S. Patent 4,110,302 (1978).
  •  
  • 15. Thomas NW, Berardinelli FM, Edelman R, U. S. Patent 4,071,503 (1978).
  •  
  • Polymer(Korea) 폴리머
  • Frequency : Bimonthly(odd)
    ISSN 0379-153X(Print)
    ISSN 2234-8077(Online)
    Abbr. Polym. Korea
  • 2023 Impact Factor : 0.4
  • Indexed in SCIE

This Article

  • 2015; 39(4): 611-620

    Published online Jul 25, 2015

  • 10.7317/pk.2015.39.4.611
  • Received on Dec 19, 2014
  • Accepted on Jan 28, 2015